1 Lab: Digit recognition

For this lab, some of the computations take a lot of time. For the most time-intensive computations, you
are instructed to omit the code from your stencil so submitting doesn’t take forever!

In this lab, you will test out some methods for recognizing handwritten digits. The training data
consist of a bunch of 28 x 28 images of handwritten digits. For each image, you are also given the correct
digit (the label).!

Given a new input image, your program should guess the digit it depicts by finding the nearest image
in the training data and outputting the label of the closest image. This approach to learning is called
nearest neighbor. You will evaluate the approach by using it to guess the digits depicted by a bunch of
test images (that come with labels) and reporting the error rate.

What do we mean by nearest? How do we measure the distance between two images? The images
are represented as Vecs, so it is natural to use the norm (or squared norm) of the difference between the
two vectors.

Computing the squared norm involves squaring and adding up 282 = 784 numbers. Comparing the
input image to 3,000 training images thus involves computing 3000 - 784 = 2,352, 000 squares.

An appealing alternative is to choose a small number of vectors vy, ..., v (perhaps k is ten or twenty),
and precompute for each training vector v the coordinate representation of v in terms of vy, ..., v;. For
each input image u, compute its coordinate representation, and compare it to the coordinate representa-
tions of the training vectors; output the label of the nearest coordinate representation. This has several
advantages:

1. It takes much less computation to find the nearest coordinate representation in terms of twenty vec-
tors; comparing the coordinate representation of the input image to the coordinate representations
of 3,000 training images involves computing 3000 - 20 = 60, 000 squares.

2. If vy, ..., v are orthonormal, computing the coordinate representation is quick and easy.

3. If vy, ..., v, are orthonormal, the distance between coordinate representations of two vectors equals
the distance between the two vectors.

However, it is highly unlikely that such a small number of vectors vy, ..., v; can span all of the training
data. No matter which k£ vectors you choose, most of the training images will not have coordinate
representations in terms of those vectors. Instead, each image is projected onto the span of those
vectors, and we use the coordinate representation of the projection. This approach preserves the first
two advantages:

1. It takes much less computation to find the nearest coordinate representation.

2. If vy,...,v; are orthonormal, computing the coordinate representation of the projection onto
Span {v1,...,vx} is quick and easy.

IThe data we use is from the MNIST Database of handwritten digits NIST is the US’s National Institute of Standards
and Technology. This institute provided the original images, which were processed by Yann LeCun. The files we provide
are derived from files he created.



What about the third advantage? The distance between coordinate representations of the projections of
two vectors is the same as the distance between the projections, but the distance between the projections
of two vectors is not likely to be the same as the distance between the two vectors themselves. This
suggests that using nearest neighbor on the images’ projections (or their coordinate representations) is
likely to have a worse error rate than using nearest neighbor on the original images. If the error rate is
not too much worse, we might consider it worth using projection because of the time savings.

If the vectors vq,...,v; are chosen randomly, the error rate becomes much worse. The surprise is
that, if they are chosen to be principal components (right singular vectors), the error rate is actually
better than the error rate for the images themselves. Using this method yields both better accuracy and
better computational performance.

(Another fun fact: every task in this lab can be achieved using a one-liner, including each of the
procedures.)

Task 1.1: Write the procedure sq_dist(u, v) that, given two Vecs, returns the squared distance
between them.

Task 1.2: Write the procedure nn(u, veclist) that, given a Vec u and a list veclist of Vecs, returns
the index i of the Vec in veclist whose squared distance from u is the smallest. Your procedure should
use sq_dist(u, v).

Task 1.3: Write the procedure nn_label(u, veclist, labels) that, given a Vec u, a list veclist
of Vecs and a list labels of corresponding labels, returns the label of the element of veclist nearest
to u. Your procedure should use nn(u, veclist).

Task 1.4: Write the procedure error_rate(guessed_labels, correct_labels) that, given two
equal-length lists of labels, reports the percentage of corresponding labels that do not match.

We provide files mnist-images.dat and mnist-labels.dat with binary representations of 3,100 im-
ages and the corresponding labels, and a module, mnist_loader, that defines a procedure load_data(n)
that returns a pair of lists of length n, a list of Vecs, each representing an image, and a list of the
corresponding labels.

Use the procedure to load 3100 images and the corresponding labels.

>>> from mnist_loader import load_data
>>> images, labels = load_data()

Use the image module (provided to you) to see what the images look like:

>>> v = images[0]
>>> import image
>>> image.image2display([[v[i,j] for j in range(28)] for i in range(28)])

The first 3000 images and corresponding labels will be used for training. The 100 images and labels after
those will be used for testing.



>>> train_images = images[:3000]
>>> train_labels = labels[:3000]
>>> test_images = images[3000:3100]
>>> test_labels = labels[3000:3100]

Next you will try out basic nearest-neighbor (without any projection). Use the Python REPL.

Task 1.5: Assign to guessed_labels the list of labels that nearest-neighbor assigns to images in the
100-element list test_images.

Note: This takes about six seconds per image. | recommend you first try the computation on a 10-
element list, test_images[:10]. The labels | got were:
[3, 5,1, 4,1, 9,7, 7, 0, 5]

Compare those guessed labels to the true labels, test_labels[:10].

Once you've verified that you've got the right approach, start the process of computing the list of
guessed labels for all 100 images. You can copy and paste the list into your stencil.

When you are ready to compute the labels for the 100-element lists, | suggest you time the compu-
tation. Here's an easy way to do that. First, import the time module into your Python REPL. Next,
open a scratch file with your text editor, and put in the following code.

t = time.perf_counter()
(your code here)
print ("Number of seconds: ", time.perf_counter() - t)

Copy those three lines, and paste into your Python REPL.

While you’re waiting for the computation to complete, you can open a second Python session and skip
ahead to Task 1.7.

Task 1.6: Apply the procedure error_rate(guessed_labels,correct_labels) to find the error
rate of the nearest-neighbor algorithm when trained on the first 3000 images and tested on the last
hundred. Copy and paste the result into your stencil.

Next you will center the training data (translating by subtracting the centroid) and find an orthonor-
mal basis for the 20-dimensional vector space nearest to the centered training images.

Task 1.7: Write the procedure find_centroid(veclist) that, given a list of Vecs, returns their
centroid.

Task 1.8: Use your find_centroid(veclist) procedure to find the centroid of the training images.

Here’s how the centroid looks: .



Task 1.9: Find the list of centered training images by subtracting the centroid from each of the training
images.

Task 1.10: Translate the test images in the same way, subtracting from each the centroid of the training
images.

We provide a module power_svd that defines a procedure right_singular_vectors(A, k) to return
rough approximations? of the first k right singular vectors of a Mat A.

Task 1.11: Find the first twenty right singular vectors vy,..., vy of the matrix whose rows are the
centered training images.

Here’s how the first few right singular vectors look (with entries scaled up to appropriate pixel intensity

scale):

First you'll find the coordinate representations of the 3,000 training images in terms of just the first
ten right singular vectors vy, ..., v19 and use these in nearest-neighbor search on the hundred test images.
Then you’ll try the same experiment but using the first twenty right singular vectors. Finally, you’ll try
the same experiment but using twenty random orthonormal vectors.

First you will work in Vg, the span of the first ten right singular vectors vy, ..., v1g.

Task 1.12: To help you get the coordinate representations of the projections onto V;q, construct the
matrix M10 whose rows are the first ten right singular vectors.

Multiplying an image by M10 yields the coordinate representation of the projection of the image onto
VlO-

Task 1.13: Apply nearest neighbors to the coordinate representations. This involves (1) finding the
coordinate representations of the projections of the training images and of the test images, and (2) using
nn_label(v, veclist, labels) to guess a label for each of the projections of the test images. Assign
to guessed_labels_10 the list of labels that nearest-neighbor assigns to images in the 100-element list
test_images.

Note: Just as you did for for Task 1.5, do this computation in the Python REPL, not in your stencil.
You wouldn't want to repeat the computation every time you run the submit script! As before, try it out
first on a small number of test images before trying it on all 100 test images. Here's what | got for the
first ten test images:
(3, 5,1, 4,6, 4, 7, 7, 5, 5]
Compare those guessed labels to the true labels, test_labels[:10].
As before, | recommend timing the computation using the time module.

2Really rough. The corresponding singular value estimates aren’t even guaranteed to be in nonincreasing order.



Task 1.14: Find the error rate for nearest neighbor applied to the coordinate representations of the
projections onto V.

Next you will work in Vs, the span of the first twenty right singular vectors vy, ..., vg.

Task 1.15: To help you get the coordinate representations of the projections onto Vs, construct the
matrix M20 whose rows are the first twenty right singular vectors.

Task 1.16: Apply nearest neighbors to the coordinate representations. This involves (1) finding the
coordinate representations of the projections of the training images and of the test images, and (2) using
nn_label(v, veclist, labels) to guess a label for each of the projections of the test images. Assign
to guessed_labels_20 the list of labels that nearest-neighbor assigns to images in the 100-element list
test_images.

Note: Just as you did for for Task 1.5, do this computation in the Python REPL, not in your stencil.
You wouldn’t want to repeat the computation every time you run the submit script! As before, try it out
first on a small number of test images before trying it on all 100 test images. Here's what | got for the
first ten test images:

(3, 5,1, 4,1, 9,7, 7, 8, 5]
Compare those guessed labels to the true labels, test_labels[:10].

Task 1.17: Find the error rate of nearest neighbor applied to the coordinate representations of the
projections onto Vag.

Is the success of projecting onto Vo a result of the right choice of vy, ..., v, or would any orthonor-
mal vectors work just as well?

Task 1.18: Optional: Generate ten random vectors with the same domains as the image vectors. To
generate the entries, import the module random and use random.gauss(0,1).

Task 1.19: Optional: Generate a list of orthonormal vectors from the random vectors found in Task 1.18
by using the procedure orthonormalize.

Task 1.20: Optional: Construct a matrix whose rows are the orthonormal vectors from Task 1.19.

Task 1.21: Optional: Use the matrix of Task 1.20 to obtain coordinate representations of the projections
of the training and test vectors, and try out nearest neighbor. What was the error rate?

Final remarks: There are better ways to do nearest neighbor than the naive method. For example,
there is a data structure called a k-d tree. Given a bunch of training vectors, you can build a k-d tree



representation. Once this has been built, it can be searched to find the nearest neighbor to a given query
vector.

The bad news is that the k-d tree works pretty badly on the raw image vectors. (This is not hard
to understand once you understand k-d trees.) The good news is that it works wonderfully on the
coordinate representations in terms of twenty or so right singular vectors. This is related to the fact that
the directions of these vectors (the principal components) are chosen so as to maximize the spreading-out
of the projections of the training examples along the principal components.



