Caching I/O gearup!

Overview

What this project is
* How to plan your design
* How to get started writing code

« How to test and debug

Background: working with files
/ \ Syscall: ask operating system (OS) to do

int fd - open("file.txt; . -)/ some operation (e.g., open a file)

read(fd, buffer, BUFFER_SIZE);

System calls are expensive (read: slow!)

Goal: how can we build libraries to make programs that use files faster?

How? caching!

The general idea: a cache is a small amount of fast storage

used to speed up slower storage oo
Caching appears in many forms T
- CPU cache (hardware on CPU <=> DRAM N
- Your web browser (files on your computer <=> internet) C/‘\C He (FAIJ“)
- File 1/0 caching (this project) (memory <=> files) \]/\
=> Many ways to implement caching (at different Spow Croepss

layers of abstraction!) (s, con e

No caching (naive version) With caching

o Application
Appllcatlon Helper functions
Syscalls read, write, etc.
open, read, write, etc. A
K-\ Cache
Goal: can handle some (memory)
reads/writes only in cache,
avoid making syscall to go to Syscalls
file on disk open, read, write,
LW /
SYSCALLS,

Some file

Some file
test.txt

test.txt

No caching (naive version) With caching

o Application
Appllcatlon Helper functions
Syscalls read, write, etc.
open, read, write, etc.
Cache
(memory)
Syscalls

rite,
|dea: use cache to keep some file data in memory

=> Design: use some heuristics about how files are commonly accessed to make
fewer syscalls

=> |n terms of correctness, works the same way as no caching
=> However: fewer syscalls => better performance!

How you will do this

Application

. Our I/0 library io300_* functions

: ' (See i0300.h)

Cache </‘\ Just an array of bytes
(memory) (you decide how to use it!)

.
--

Syscalls
open, read, write,

You decide how to use the cache
. => Must be correct (needs to produce same
Some file files as without caching)

test.txt => Compare performance vs. standard library
(stdio) => need to be within 5-10x (see handout)

Baselines

The stencil contains "implementations” of our I/O library (impl directory):
- naive (impl/naive.c): always make the syscall
=> no caching, super slow
- stdio (impl/stdio.c): standard library version (fread, ...)
=> our performance baseline
- student (impl/student.c): Your version!
=> Starts out just like naive version

Demol!

See recording!

Th e A P | (I 03 OO . h) This is just a high-level overview of our top-level /O

functions. See i0300.h and impl/student.c for the full
function signatures, and more details!

f = open(path, mode)

close()

i10300_read(f, buffer, count)
10300 _write(f, buffer, count)
/I Same as read/write, but only work with one byte at a time
char ¢ =i0300_readc(f)

i10300_ writec(f, ch)

i0300_seek(f) // Move to specific position in file

The stencil also recommends some helpers (more on this later)!

How to think about the cache (generally)

Opening a file returns a struct i0300_file: this contains the cache and any
metadata about that file:

struct 10300 _file* £ = io300 open(path, ...)

The cache, and any metadata about this file lives inside this struct. The stencil
version i0300_open calls open() and sets up some parameters for you, and

you'll fill in the rest based on your design:

File descriptor for this file
(use for making syscalls)

// From impl/student.h
struct io300_file {

int fd <
* .
char* cache; <~ -~ the cache : just an array of bytes of
size CACHE_SIZE (a constant)
// Your metadata goes here! - 10300_open will set this up using malloc()
. .. - Our tests will compile your code with different
} values for CACHE_SIZE (for debugging locally, it

will use a value of 8, some tests will set it higher)

Fill in other parameters here based on
your design!

About the cache (and common misconceptions)
- There is exactly one cache per open file. There aren't any "global" data structures that store
information about multiple files
- The cache is just an array of bytes => you can load any bytes of the file into it, based on what you
decide for your design

=> Common misconception: the cache in this project is NOT like the CPU cache we talked about
in lecture for alignment: there are no restrictions on loading in fixed "blocks" of data. (Though the
"multislot cache" option for extra credit is a bit similar to this.)

file.txt

Example: naive version

. —~——~——~———— T W "hi there!\n"
(No caching) i0300_readc() { [}
read(fd, &c, 1); // System call
} \
f = 10300_open(“file.txt”, ..) What will readc return each time, and STMrs ke
how many syscalls will be made?

readc(f)
readc(f)
readc(f)

readc(f)

file.txt

Example: naive version

"hi there!\n"
(No caching)

f = 10300 open(“file.txt”, ..)

readc(f) => read(fd, .., 1
readc(f) => read(fd, .., 1) => 'i'
readc(f) => read(fd, .., 1) => " ' }
readc(f) => read(fd, .., 1) => 't'

10300 readc() {
read(fd, &c, 1); // System call

Naive version: makes a syscall for every single operation!

=> How can we use the cache to do better??

file.txt

Example 1: with caching ‘b therel\n®
1 ere: \n

Assume cache = 4 bytes A

L

lhy I /)) :f,
~ (sPack)
. e . One strategy: What if we "fetch" the whole cache into
f = 10300_0pen(file.txt”,) / the file when we open it
"fetch" => read(fd,, 4);

=> This is called prefetching: load data ahead of time
because we think we'll use it later!

readc(f) => 'h'
readc(f) => 'i’
readc(f) => '
readc(f) => 't

This is faster: since the data is in the cache, readc can return it without making a syscall!!
But what metadata do you need in order for readc to return the right thing each time?
=> Need some metadata to keep track of the next byte to be read/written

file.txt

Example 1.5: with caching

Assume cache = 4 bytes

"hi there!l\n"

f = 10300 open(“file.txt”, ..)
// fetch data into cache! => read(fd, .., 4)

readc(f) => 'h'

readc(f) => 'i'

readc(f) => '

readc(f) => 't' What if we do another readc after this?
What should happen now????

readc(f) S

file.txt

Example 1.5: with caching o
"hi there!\n"
Assume cache = 4 bytes A

LA
K| ge] /] x

f = 10300 open(“file.txt”, ..)
// fetch data into cache! => read(fd, .., 4)

readc(f) => 'h’ One strategy: probably going to read more of

readc(f) => "1’ the file after this... how about fetching the next
readc(f) => ' ' 4B into the cache?

readc(f) => 't' => More prefetching!

readc(f)

// fetch data into cache! =L’?ead(fd, vy 4) => "'h'

What happens to your metadata after fetching again?
=> Will need to keep it updated!

ldeas/Hints ($? FAL)

For metadata:

Byte that you will read/write next
... (more hints later) ...

Helpers:

"Fetch" : load some amount of data into the cache (based on your metadata, etc.)
=> calls read ()
... (more hints later) ...

file.txt GOAL:

Example 2: writing i thdbel\n®

Assume cache = 4 bytes

X A
p d

f2 = 10300 open(“file.txt”, ..)

readc(f) => 'h'

readc(f) => 'i' One strategy: when writing, make changes to cache,
readc(f) => ' then "flush" changes to file when necessary

readc(f) => 't'

readc(f) => 'h'

writec(f, 'x

What should happen here? writec should set the next character in the file to 'x', which is the first
'e' (based on the sequence of readc calls already made)

(Note that this is different from the current position of the OS read/write head, which is at a different
byte ('!') because of how we did the prefetching.)

Example 2: writing

Assume cache = 4 bytes

Q)

f2 = 10300 open(“file.txt”, ..)

readc(f) => 'h'
readc(f) => 'i'

readc(f) => " '
readc(f) => '
readc(f) => '

writec(f, 'x
writec(f, 'x’
writec(f, 'x

writec(f, 'x')

=> Need to "flush" changes from cache to disk
write(£fd, ...

file.txt

"hi t@_x_)g!\n"

h (Dx

@ x

O x

BT pav T peco 70

(PDATE CACTMQ
E% (3&&@&: FILE)67{

/ 4);6257

Now what happens as we write more to the file?

9

Cache was modified, so need to "flush"
changes in memory before fetching again
=> Need to keep track of if cache was
modified! (often called "dirty")

ldeas/Hints

For metadata, need some way to keep track of...
« Next byte to read/write
 Whether not cache was modified

¢ ... You will need more metadata than this!
=> Consider as you work on the rest of the design phase!

Helpers:
« fetch: Fill the cache with next N bytes from file => calls read()

e flush: Write cache to disk => calls write()

Planning your design

Example from handout

char buffer[5];

i0300_filex testFile = i0300_open("testfiles/tiny.txt", "tiny!");
ssize_t r = 10300_read(testFile, buffer, 5);

ssize_t w = 10300_write(testFile, "aaa", 3);

r = io300_read(testFile, buffer, 2);

ssize_t s = 10300_seek(testFile, 12);

w = 10300_write(testFile, "aaa", 3);

r = i0300_readc(testFile);

i0300_close(testFile);

Try this out similarly to what you've seen here
=> Think about what should happen in file
=> What metadata you will need
=> Need to make sure file is correct!
=> We provide a handy worksheet

-

Hints here are only a starting point!

=> See handout for more guidance!

Getting started

Do design part, bring to section
You can start writing code as soon as you feel comfortable

Phase 1: Recommend starting with readc/writec
=> Then, consider add seek

Phase 2: read/write/seek

=> Same as readc/writec, but working with multiple bytes

=> Don't implement by calling readc/writec (won't pass the performance tests)
=> You will want to use memcpy here (see handout for details)

Starting your implementation

 You can start writing code as soon as you feel comfortable

* Phase 1: readc/writec

— Leave other functions intact until you're ready
— Once working, consider interactions with seek

 Phase 2: read/write (+seek)
— Same idea as readc/writec, but read/write multiple bytes
— Use memcpy to copy data to/from cache
— DO NOT use readc/writec as helpers (won't give you credit!)

Super helpful tool: strace

strace is a tool to show what system calls your program makes
=> Use this instead of writing complicated print statements!

See the recording for a demo, as well as guidance in the handout!

strace should become your friend!!!

Getting started with testing

e Correctness tests (make check)
— Regression tests (make check-regression)
=> very small examples (some of which you'll write!)
— Fuzz tests (make check-fuzz) => run lots of random operations on files
— End-to-end tests (make check-e2e) => tests more components

* Performance tests (make perf)
— Compares your implementation vs. stdio

Demol!

See recording for examples of how to run the tests!
(More guidance also in the handout)

Regression tests (make check-regression)

Idea: super small tests, easy to check by hand!
=> Should be good for starting out!

=> We provide a few, but we ask you to write some on your own, based
on what is meaningful for your design

See the handout for a step-by-step guide for getting started!

Regression tests (make check-regression)

rtestO01.c:

int main() {
assert(CACHE_SIZE == 8);
struct 10300_file* f = create_file_from_string(TEST_FILE, "hello world");

// Do some readc operations
assert(10300_readc(f) == 'h');

assert(10300_readc(f) == 'e');
assert(io0300_readc(f) == '1');

// Close the file
10300_close(f);

=> Compare with examples you make by hand!
=> |deally: minimal examples to test as few features as possible

(e.g., read enough bytes to fetch, read to EOF, etc.)
= Once you write a test, you can keep using it to check for regressions
(ie, when new things break old stuff)

(*Fun fact: This is a software engineering term: in general, fuzz tests try lots
of random things to look for edge cases that break stuffl)

Fuzz* tests (make check-tuzz)

. Each test shows the command to run it manually.
TeSt prog ram:. IOSOO—teSt run i0300_test --help for more options

RANDOM SEED FOR THIS RUN: 1398752801

(1) BASIC FUNCTIONALITY TESTS
. readc

-> ./10300_test readc --seed 1398752801 -n 8192 --file-size 4096 --max-size 8192
PASSED!

2. writec

-> ./10300_test writec --seed 1398752801 -n 8192 --file-size 4096 --max-size 8192
PASSED!

3. readc/writec
-> ./10300_test readc writec --seed 1398752801 -n 8192 --file-size 4096 --max-size 8192

"Call readc and writec 8192 times on a random file" of size 4096...

=> Performs random operations, checks for correctness a Best way to debug: run the test manually
=> When encountering a problem, run on your own! —s ks e sarme ased valis

Getting started: run io300_test yourself

To start testing on your own:

-> ./10300_test readc --seed 1234 -n 100 -1 test_files/tiny.txt

A good way to get started is to run i0300_test on a sample file (see the test_files directory)
This example asks i0300_test to call readc 100 times on test_files/tiny.txt, and will verify that
your readc returns the correct results each time. This is a good way to make sure one
function at a time is correct!

As you get errors, compare with what you expect to see in the file to help debug.

When debugging tests write/writec, add the option --no-cleanup to make i0300_test save the
output file for you to inspect (see handout for more info when you get to this)

End-to-end tests

Small programs that use a combination of i0300_* functions
Find in “test_programs’ directory!

byte_cat: Copy bytes one at a time from input to output file (readc/writec)

block_cat: For some block size N, use read/write to read in an input file and write to
output file

reverse_block/byte_cat: Do the same thing, but iterate through the file backwards (why
might this be slower

... and more! Take a look at the programs to see what they do! (Helpful notes in
comments)

=> Recommended way to debug: run gdb on the test with a sample file (see handout for
details)

byte_cat.c

for (int 1 = 0; 1 < filesize; 1++) {

int ch = 10300_readc(in); &—— PrAD Fiom -
1{? (Eh ==1c_>1) {r'ea c(in ZLA JMPYT FILE

// ...

break; -
} v WETETO osipor gy
1f (10300_writec(out, ch) == -1) {

// ...

break;

¥
¥

Pe rfO rm a ﬂ Ce teStS (m a ke pe rf) 1, WARNING: Performance can vary

significantly between systems. Be sure to
check your results on the grading server,
which could be very different from your

() CO m pa res yo ur p rog ram a g a | N St std |O system! See the handout for details.

* Your implementation needs to be within...

— 10x for byte_cat tests
— Sx for block cat tests

* Warning: print statements will slow things down
— See handout for how to deal with this

Need to pass relevant correctness test first!

=> Focus on building a correct implementation first!
(We won't give credit on performance unless the relevant parts of your
implementation are correct)

Performance tests (make perf)

Example output:

performance result: byte cat: stdio=0.05s, student=0.11s,
performance result: reverse byte cat: stdio=0.16s, student=0.
performance result: block cat: stdio=0.01ls, student=0.05s,
performance result: reverse block cat: stdio=0.02s, student=0
performance result: random block cat: stdio=0.02s, student=0.09s,
performance result: stride cat: stdio=0.27s, student=1.48s,

PERFORMANCE RESULTS

byte cat: 2.2x stdio's runtime
reverse byte cat: 1.12x stdio's runtime
block cat: 5.0x stdio's runtime
reverse block cat: 5.0x stdio's runtime
random block cat: 4.5x stdio's runtime

strlde cat: stdio's runtime

I, WARNING: Performance can vary

significantly between systems. Be sure to
check your results on the grading server,
which could be very different from your
system! See the handout for details.

=2.20
18s,
ratio=5.00

.10s, ratio=5.00

ratio=1.12

ratio=4.50

ratio=5.48

A note on testing

The way tests work is pretty different than other projects...
« Many tests use the same functions

* One bug can cause failures on a lot of tests => this doesn't
mean you're doing a bad job!

When you get stuck: think back to your design
= What should happen

= What is happening now? (gdb, strace, print statements, etc.)
— How do these differ?

11111 fyou get stuck, we're always here
You got this!!!!! -

Timeline

* Design plan: bring to section this week (Thurs-Sat, Oct 16-18)
— Get feedback from your peers!

* Final deadline: Friday, October 24

Good luck!! You got this!!!

