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Intro to Counting

Overview

Counting Sequences (15.2)
The Product Rule (15.2.1)
Subsets of an n-element Set (15.2.2)
The Sum Rule (15.2.3)

The Generalized Product Rule (15.3)
Defective Dollar Bills (15.3.1)
A Chess Problem (15.3.2)
Permutations (15.3.3)
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Counting Sequences (15.2)

Continuous vs. Discrete

continuous discrete
sounds

words
clay legos

photographs diagrams
mouse keyboard

sitting on the floor sitting in seats
R Z

quantities numbers
measuring counting
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Intro to Counting

Counting Sequences (15.2)

General strategy for counting

I Get good at counting some categories of things.

I Use bijections to relate one of those to the problem at hand.

I The main category we will study is counting sequences.
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Intro to Counting

Counting Sequences (15.2)

The Product Rule (15.2.1)

Product rule

Rule: If P1,P2, . . . ,Pn are finite sets, then:

|P1 × P2 × · · ·Pn| = |P1| · |P2| · · · · · |Pn|.

Example:

I cakes = { chocolate, vanilla }
I toppings = { sprinkles, crumbs, none }
I fillings = { choc creme, white creme, jelly, custard, none }

If a donut consists of a choice of cake (one of 2), topping (one of
3), and filling (one of 5), how many different donuts are there?
2× 3× 5 = 30.
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Counting Sequences (15.2)

The Product Rule (15.2.1)

Freestyle
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Intro to Counting

Counting Sequences (15.2)

Subsets of an n-element Set (15.2.2)

Number of subsets rule

We showed that the number of subsets of a set of size n has a
bijection with the set of binary strings of length n.

Why are there 2n binary strings of length n?

{0, 1}n = {0, 1} × {0, 1} × · · · × {0, 1}.

Product rule! 2 · 2 · · · · · 2 = 2n.
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Intro to Counting

Counting Sequences (15.2)

The Sum Rule (15.2.3)

Sum rule

Rule: If A1,A2, . . . ,An are disjoint sets, then:

|A1 ∪ A2 ∪ · · · ∪ An| = |A1|+ |A2|+ · · ·+ |An|.

Example:

I Mello Yello and Mello Yello Zero come in 8 flavors.

I Seagram’s and Seagram’s Diet come in 6 flavors.

Total? 8 · 2 + 6 · 2 = 28.
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Intro to Counting

Counting Sequences (15.2)

The Sum Rule (15.2.3)

Counting Passwords (15.2.4)
Valid password:

(1) Sequence of 6 to 8 symbols. (2) First symbol
must be a letter (either case). (3) Rest are letters or digits.

I Digit symbol: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. 10
I Letter: { a, b, ..., z }. 26
I Letter symbol: letter × { upper, lower}. 26 · 2 = 52
I Letter/digit symbol: letter symbol ∪ digit symbol.

52 + 10 = 62
I 6-symbol password: letter symbol × 5 letter/digit symbols.

52 · 625 = 5e+10
I 7-symbol password: letter symbol × 6 letter/digit symbols.

52 · 626 =3e+12
I 8-symbol password: letter symbol × 7 letter/digit symbols.

52 · 627 = 2e+14
I valid password: 6-symbol password ∪ 7-symbol password ∪

8-symbol password. 5e+10 + 3e+12 + 2e+14 = 2e+14
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Intro to Counting

The Generalized Product Rule (15.3)

Counting assignments

I have 4 different donuts and 5 different people. How many
different ways can I give the donuts to the people?

There’s a bijection between sequences and donut assignments.

If the five people are Julia, Julie, Michael, Thomas, and Tyler, I can
give the first donut to Thomas, the second to Tyler, the third to
Julie, the fourth to Julie. The sequence is: (Thomas, Tyler, Julie,
Julie). Every assignment of the 4 donuts to the people becomes a
sequence. Every sequence corresponds to a way to give the donuts
to the people. Bijection. There are 54 = 625 sequences (product
rule), so there are 625 ways of assigning the donuts to people.

In general, n people, k donuts, nk assignments of the donuts to
people.
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Intro to Counting

The Generalized Product Rule (15.3)

Generalized product rule

If we add the constraint that no person gets more than one donut,
the product rule no longer applies.

Specifically, the entries in the
list now depend on each other and we can’t count them by just
multiplying.

Rule: Let S be a set of length-k sequences. If there are:

I n1 possible first entries,

I n2 possible second entries for each first entry,

I
...

I nk possible kth entries for each sequence of first k − 1 entries,

then:
|S | = n1 · n2 · n3 · · · · · nk .

61 / 100



Intro to Counting

The Generalized Product Rule (15.3)

Generalized product rule

If we add the constraint that no person gets more than one donut,
the product rule no longer applies. Specifically, the entries in the
list now depend on each other and we can’t count them by just
multiplying.

Rule: Let S be a set of length-k sequences. If there are:

I n1 possible first entries,

I n2 possible second entries for each first entry,

I
...

I nk possible kth entries for each sequence of first k − 1 entries,

then:
|S | = n1 · n2 · n3 · · · · · nk .

62 / 100



Intro to Counting

The Generalized Product Rule (15.3)

Generalized product rule

If we add the constraint that no person gets more than one donut,
the product rule no longer applies. Specifically, the entries in the
list now depend on each other and we can’t count them by just
multiplying.

Rule: Let S be a set of length-k sequences. If there are:

I n1 possible first entries,

I n2 possible second entries for each first entry,

I
...

I nk possible kth entries for each sequence of first k − 1 entries,

then:
|S | = n1 · n2 · n3 · · · · · nk .

63 / 100



Intro to Counting

The Generalized Product Rule (15.3)

Generalized product rule

If we add the constraint that no person gets more than one donut,
the product rule no longer applies. Specifically, the entries in the
list now depend on each other and we can’t count them by just
multiplying.

Rule: Let S be a set of length-k sequences. If there are:

I n1 possible first entries,

I n2 possible second entries for each first entry,

I
...

I nk possible kth entries for each sequence of first k − 1 entries,

then:
|S | = n1 · n2 · n3 · · · · · nk .

64 / 100



Intro to Counting

The Generalized Product Rule (15.3)

Generalized product rule

If we add the constraint that no person gets more than one donut,
the product rule no longer applies. Specifically, the entries in the
list now depend on each other and we can’t count them by just
multiplying.

Rule: Let S be a set of length-k sequences. If there are:

I n1 possible first entries,

I n2 possible second entries for each first entry,

I
...

I nk possible kth entries for each sequence of first k − 1 entries,

then:
|S | = n1 · n2 · n3 · · · · · nk .

65 / 100



Intro to Counting

The Generalized Product Rule (15.3)

Generalized product rule

If we add the constraint that no person gets more than one donut,
the product rule no longer applies. Specifically, the entries in the
list now depend on each other and we can’t count them by just
multiplying.

Rule: Let S be a set of length-k sequences. If there are:

I n1 possible first entries,

I n2 possible second entries for each first entry,

I
...

I nk possible kth entries for each sequence of first k − 1 entries,

then:
|S | = n1 · n2 · n3 · · · · · nk .

66 / 100



Intro to Counting

The Generalized Product Rule (15.3)

Generalized product rule

If we add the constraint that no person gets more than one donut,
the product rule no longer applies. Specifically, the entries in the
list now depend on each other and we can’t count them by just
multiplying.

Rule: Let S be a set of length-k sequences. If there are:

I n1 possible first entries,

I n2 possible second entries for each first entry,

I
...

I nk possible kth entries for each sequence of first k − 1 entries,

then:

|S | = n1 · n2 · n3 · · · · · nk .

67 / 100



Intro to Counting

The Generalized Product Rule (15.3)

Generalized product rule

If we add the constraint that no person gets more than one donut,
the product rule no longer applies. Specifically, the entries in the
list now depend on each other and we can’t count them by just
multiplying.

Rule: Let S be a set of length-k sequences. If there are:

I n1 possible first entries,

I n2 possible second entries for each first entry,

I
...

I nk possible kth entries for each sequence of first k − 1 entries,

then:
|S | = n1 · n2 · n3 · · · · · nk .

68 / 100



Intro to Counting

The Generalized Product Rule (15.3)

Counting assignments with restrictions

With the 5 people and 4 donuts case, any of the 5 can be given
the first donut.

But, for the second donut, we cannot reuse
whoever got the first one. So, 4 choices left. For the third donut,
there are only 3 choices of people left. And, for the fourth donut,
there are only two people left.

5 · 4 · 3 · 2 = 120, which is less than the 625 unrestricted
possibilities. (How many ways are there to give out the donuts so
that someone gets more than one donut?)

General form, n people, k < n donuts, no one gets more than one:
n · (n − 1) · · · · · (n − k + 1).

69 / 100



Intro to Counting

The Generalized Product Rule (15.3)

Counting assignments with restrictions

With the 5 people and 4 donuts case, any of the 5 can be given
the first donut. But, for the second donut, we cannot reuse
whoever got the first one.

So, 4 choices left. For the third donut,
there are only 3 choices of people left. And, for the fourth donut,
there are only two people left.

5 · 4 · 3 · 2 = 120, which is less than the 625 unrestricted
possibilities. (How many ways are there to give out the donuts so
that someone gets more than one donut?)

General form, n people, k < n donuts, no one gets more than one:
n · (n − 1) · · · · · (n − k + 1).

70 / 100



Intro to Counting

The Generalized Product Rule (15.3)

Counting assignments with restrictions

With the 5 people and 4 donuts case, any of the 5 can be given
the first donut. But, for the second donut, we cannot reuse
whoever got the first one. So, 4 choices left.

For the third donut,
there are only 3 choices of people left. And, for the fourth donut,
there are only two people left.

5 · 4 · 3 · 2 = 120, which is less than the 625 unrestricted
possibilities. (How many ways are there to give out the donuts so
that someone gets more than one donut?)

General form, n people, k < n donuts, no one gets more than one:
n · (n − 1) · · · · · (n − k + 1).

71 / 100



Intro to Counting

The Generalized Product Rule (15.3)

Counting assignments with restrictions

With the 5 people and 4 donuts case, any of the 5 can be given
the first donut. But, for the second donut, we cannot reuse
whoever got the first one. So, 4 choices left. For the third donut,
there are only 3 choices of people left.

And, for the fourth donut,
there are only two people left.

5 · 4 · 3 · 2 = 120, which is less than the 625 unrestricted
possibilities. (How many ways are there to give out the donuts so
that someone gets more than one donut?)

General form, n people, k < n donuts, no one gets more than one:
n · (n − 1) · · · · · (n − k + 1).

72 / 100



Intro to Counting

The Generalized Product Rule (15.3)

Counting assignments with restrictions

With the 5 people and 4 donuts case, any of the 5 can be given
the first donut. But, for the second donut, we cannot reuse
whoever got the first one. So, 4 choices left. For the third donut,
there are only 3 choices of people left. And, for the fourth donut,
there are only two people left.

5 · 4 · 3 · 2 = 120, which is less than the 625 unrestricted
possibilities. (How many ways are there to give out the donuts so
that someone gets more than one donut?)

General form, n people, k < n donuts, no one gets more than one:
n · (n − 1) · · · · · (n − k + 1).

73 / 100



Intro to Counting

The Generalized Product Rule (15.3)

Counting assignments with restrictions

With the 5 people and 4 donuts case, any of the 5 can be given
the first donut. But, for the second donut, we cannot reuse
whoever got the first one. So, 4 choices left. For the third donut,
there are only 3 choices of people left. And, for the fourth donut,
there are only two people left.

5 · 4 · 3 · 2 = 120, which is less than the 625 unrestricted
possibilities.

(How many ways are there to give out the donuts so
that someone gets more than one donut?)

General form, n people, k < n donuts, no one gets more than one:
n · (n − 1) · · · · · (n − k + 1).

74 / 100



Intro to Counting

The Generalized Product Rule (15.3)

Counting assignments with restrictions

With the 5 people and 4 donuts case, any of the 5 can be given
the first donut. But, for the second donut, we cannot reuse
whoever got the first one. So, 4 choices left. For the third donut,
there are only 3 choices of people left. And, for the fourth donut,
there are only two people left.

5 · 4 · 3 · 2 = 120, which is less than the 625 unrestricted
possibilities. (How many ways are there to give out the donuts so
that someone gets more than one donut?)

General form, n people, k < n donuts, no one gets more than one:
n · (n − 1) · · · · · (n − k + 1).

75 / 100



Intro to Counting

The Generalized Product Rule (15.3)

Counting assignments with restrictions

With the 5 people and 4 donuts case, any of the 5 can be given
the first donut. But, for the second donut, we cannot reuse
whoever got the first one. So, 4 choices left. For the third donut,
there are only 3 choices of people left. And, for the fourth donut,
there are only two people left.

5 · 4 · 3 · 2 = 120, which is less than the 625 unrestricted
possibilities. (How many ways are there to give out the donuts so
that someone gets more than one donut?)

General form, n people, k < n donuts, no one gets more than one:

n · (n − 1) · · · · · (n − k + 1).

76 / 100



Intro to Counting

The Generalized Product Rule (15.3)

Counting assignments with restrictions

With the 5 people and 4 donuts case, any of the 5 can be given
the first donut. But, for the second donut, we cannot reuse
whoever got the first one. So, 4 choices left. For the third donut,
there are only 3 choices of people left. And, for the fourth donut,
there are only two people left.

5 · 4 · 3 · 2 = 120, which is less than the 625 unrestricted
possibilities. (How many ways are there to give out the donuts so
that someone gets more than one donut?)

General form, n people, k < n donuts, no one gets more than one:
n · (n − 1) · · · · · (n − k + 1).

77 / 100



Intro to Counting

The Generalized Product Rule (15.3)

Defective Dollar Bills (15.3.1)

Serial numbers

“Defective” because the serial number (11180915) repeats a digit
(1).
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Intro to Counting

The Generalized Product Rule (15.3)

Defective Dollar Bills (15.3.1)

Fraction non-defective

Assuming all 8-digit serial numbers equally likely, what fraction of
bills are not defective?

How many 8-digit serial numbers? 108 by the product rule.

How many 8-digit serials numbers have no repeats (not defective)?
10 · 9 · 8 · 7 · 6 · 5 · 4 · 3 = 1814400 by the generalized product rule.

Fraction not defective: not-defective / total =
1814400/100000000 = .018144 or 1.8%.
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Intro to Counting

The Generalized Product Rule (15.3)

A Chess Problem (15.3.2)

Pawn, Bishop, Knight

How many different ways can we place a pawn (P), a knight (N),
and a bishop (B) on a chessboard so that no two pieces share a
row or a column?

There are 8 rows and 8 columns, which we’ll number 1 to 8.

For example, P:(1,2), N:(4,1), B:(6,2) is invalid because the the
pawn and bishop are in the samel column (2). Moving B to (6,3)
fixes it.

P’s row and column are unrestricted: 8 · 8. N only has 7 remaining
choices of row and 7 remaining choices of column: 7 · 7. Finally, B
has 6 choices for each of row and column.

So, 8 · 8 · 7 · 7 · 6 · 6 = 112896 different ways.
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Intro to Counting

The Generalized Product Rule (15.3)

Permutations (15.3.3)

Definition

Definition: A permutation of a set is a sequence consisting of the
elements of the set each repeated exactly once.

S = {w , x , y , z}
(w , x , y , z), (w , x , z , y), (w , y , x , z), (w , y , z , x), (w , z , x , y), (w , z , y , x),
(x ,w , y , z), (x ,w , z , y), (x , y ,w , z), (x , y , z ,w), (x , z ,w , y), (x , z , y ,w),
(y , x ,w , z), (y , x , z ,w), (y ,w , x , z), (y ,w , z , x), (y , z , x ,w), (y , z ,w , x),
(z , x , y ,w), (z , x ,w , y), (z , y , x ,w), (z , y ,w , x), (z ,w , x , y), (z ,w , y , x),

How many permutations on n elements? It’s like the non-repeating
donut problem where n = k :

n · (n − 1) · (n − 2) · · · · · 1 = n!.
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Intro to Counting

The Generalized Product Rule (15.3)

Permutations (15.3.3)

Examples

I Assigning n professors n classes to teach (one each).

I Assigning n actors to n roles (one each).

I Visit all of n cities in some order.

I Seating arrangements of n people.

I Ways of shuffling n cards.
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