

How would we represent a collection of nodes within, eg., a community?
 => Problem: what if we have a LOT of nodes?

How would represent membership in a collection?

Good initial choice is a hashset...

Problem: how do we name the nodes in a set?

=> Can be especially problematic when there are a lot of nodes (eg. really lage graph)

 - Idea: Could assign a name to each Node object: {"node1", "node2", ...}

 - Another idea: Could just use the memory addresses: {@1127, @4452, ...}

 => Storing a set of numbers (addresses) would use less space than strings)

What else could we do?

Claim: if we get creative about how we name the objects, can
represent membership in a space-efficient way

COMMUNITY OF FRIENDS

Idea: smallest piece of information in a
computer is a bit (0, 1)

 - Assign a name as a sequence of bits
(bit vector, or a bit string)

Set[0100, 0101, 0110, 0111]

Claim: if we get creative about how we name the objects, can represent membership in a
space-efficient way

Idea: give each state a name

 - Smallest piece of information in a computer is a bit (0 or 1)

 - Assign name to each state “bit string” (sequence of bits)’

	 	 For n states, how many bits? Log2(N)

Using bitstrings would let us make the set:

	 	 Set[0100, 0101, 0110, 0111]

=> This is much smaller than using objects or addresses, but still grows linearly!

Can we do better?

In general: N bits => 2^N possible
“things” (in this case states)
	 OR
M states => log2(M) bits
log2(9) = 3.1 => 4 (need all names to
be same length)

①

minty

1 h SET OF SAFE

T T EYE STATES

=> Using this idea, we can represent each state as a bitstring of
0’s and 1’s

> Notation: we write state of individual bit as b0, b1, …, where
b0 could be 0 or 1 (like a Boolean variable)

What can we do with this?

 - Represent states VERY succinctly (lower space complexity)

 - Can represent set of reachable states as a decision tree => Binary Decision Diagram (BDD)

BDD: How it works (high level)

 - Each bit is like a step in a decision
tree: value is either 0 or 1. After that,
consider the next bit

 - Each "leaf" is a decision on whether
or not the node is in the set

 - Can make this very compact...

1127

EH FE

NAME 1

IfHASHSET NODE
ONE PER ITEM

IN SET

STILL LINEAR

IN OF OBJECTS

If we are clever about how to select the names, can reduce a large decision tree into a
small one (similar to the decision tree project!). For example, if b1==1 => always false

Can also write this as a formula:

	 Reachable: (b1 == 0) AND (b2 == 1)

	 Could also write as: (not b1) and (b2)

==> To check if the state is safe, Don’t even need to store a list of reachable states! Just need to
check if the bitstring matches the formula!

Formula would be a lot more complicated!

((not b1) and (not b2) and (not b3) and (not b4)) OR

((b1) and (not b2) and (b3) and (not b4) OR

…

Takeaways:

 - Coming up with a good naming of states
is nontrivial

 => Problems are provably
computationally hard, people work on this
for specific settings

 - Depending on what the BDD looks like,
logical formula may get complex

Want to learn more?

Consider taking: Logic for Systems

 => Learn about algorithms people have
made to represent these in more concise
ways, make tools to help, software to use

Try it: what would the BDD look like if we picked these names instead?

0100 0010 0000

0101 0011 0001

0110 0111 1000

1 BIT 0 152 NODES

2 Bits 00 01 10 11 4NODES

3 BITS 000 001 010 01 8NODES
100 101 110 111

11 16 NODOS

Y BITS

“this is an example of a huffman tree”

ASCII: Use 8 bit bitstring for each character

	 => 4 * 8 bits = 32 bits total

Storage: increases linearly with number of
characters

BigWiki: 141 million characters * 8 bits ~= 136MB

Idea: language (and most data) isn’t random

Compression: use fewer bits to represent data that
appears more frequently

	 “e” appears more often than “x”—so maybe
we can use fewer bits?

Huffman coding:

 - for some input data, find unique bitstring to
represent characters, use fewer bits for more
common letters

Takeaways:

 => Leveraging patterns in data for efficiency

 => Encoding pattern in BDD structure (use to convert)

Compression: how to store text efficiently?

