How would we represent a collection of nodes within, eg., a community?
=> Problem: what if we have a LOT of nodes?

/ ¢ OPE N
/ CONAVPIT, }/
[20 {hope: green J hope: yellow }
waterman: green waterman: yellow waterman: green
[m \] [hope: yellow
waterman: yellow waterman: yellow

hope: yellow

\

S 6-6 IV STATES
t/S/Fb,VS,Er.)

—>

SET 0F Sppe

S

How would represent membership in a collection?
Good initial choice is a hashset...

Problem: how do we name the nodes in a set?
=> Can be especially problematic when there are a lot of nodes (eg. really lage graph)

- ldea: Could assign a name to each Node object: {"node1", "node2", ...}

- Another idea: Could just use the memory addresses: {@1127, @4452, ...}
=> Storing a set of numbers (addresses) would use less space than strings)

What else could we do?

Claim: if we get creative about how we name the objects, can
represent membership in a space-efficient way

0)07 00]0 Oocf
hope: rec {hope: green J hope! yellow }
waterman: green waterman: yellow waterman: green
_ _ o 610} , 00/ oo |
Idea: smallest piece of information in a o
. . hope: rec hope: yellow hope: green
COmpUter is a bit (O, 1) waterman: yellow waterman: yellow’ watermari” green

- Assign a name as a sequence of bits
(bit vector, or a bit string) ol | o) Dood

|

2 B => gp 0l 10)l = Y rwes.

hope: yellow
:};.T—.Er TR r:.;:";_ﬁb‘:‘z '/

) B =2 0) = Z Wope

< pyrt ¥ ove o) ¢l O/ => & WoprS

Jjoo o1)i oy

—
") Meps

D 72,73
Set[0100. 0101, 0110, 0111]

Claim: if we get creative about how we name the objects, can represent membership in a
space-efficient way

Idea: give each state a name

- Smallest piece of information in a computer is a bit (0 or 1)

- Assign name to each state “bit string” (sequence of bits)’
For n states, how many bits? Log2(N)

i —— 00,
mm'ﬁu yellow 'Qi‘iﬁinyé'fteuw m green
S PEPRESENT
\\O 195 _ I . -
— =; | L SIATES=Z HMmsog 2 B
Y Poss igte BiTSTRmES
[4 -
/ STATES V00 of (0 11 P 2 Bire
In general: N bits => 2N possible a& PosS12 LE BT STR/WES
“things” (in this case states) e/ 1 - 7
OR 7 Goe 06 o0 o/)
M states => log2(M) bits
log2(9) = 3.1 => 4 (need all names to /00 o] / /0O ./

be same length)

=> 2 E/rc

Using bitstrings would let us make the set:
Set[0100, 0101, 0110, 0111]

=> This is much smaller than using objects or addresses, but still grows linearly!

Can we do better?

.

waterman: yellow

ool

hope: yellow

waterman: yellow

What can we do with this?

=> Using this idea, we can represent each state as a bitstring of
O’sand 1’s

0l o2
by bz by by

> Notation: we write state of individual bit as b0, b1, ..., where
b0 could be 0 or 1 (like a Boolean variable)

- Represent states VERY succinctly (lower space complexity)
- Can represent set of reachable states as a decision tree => Binary Decision Diagram (BDD)

BDD: How it works (high level)

- Each bit is like a step in a decision
tree: value is either 0 or 1. After that,
consider the next bit

- Each "leaf" is a decision on whether
or not the node is in the set

- Can make this very compact...

If we are clever about how to select the names, can reduce a large decision tree into a
small one (similar to the decision tree project!). For example, if b1==1 => always false

M

Z

|

\Az_w}\}'! T

Can also write this as a formula:
Reachable: (b1 ==0) AND (b2 == 1)

Could also write as: (not b1) and (b2)

==> To check if the state is safe, Don’t even need to store a list of reachable states! Just need to
check if the bitstring matches the formula!

Try it: what would the BDD look like if we picked these names instead?

Qol\o oW\

hope: green hope: yellow
waterman: yellow waterman: green

hope: red

waterman: green

|| 000 \OD\ O o o0

v 10
hope: red hope: yellow hope: green
waterman: yellow waterman: yellow waterman: green) Z @ B
k 3 Vf

W00 WO

hope: yellow hope: red
waterman: red waterman: red

+QOlO\
Formula would be a lot more complicated!

((not b1) and (not b2) and (not b3) and (not b4)) OR

Takeaways: ((b1) and (not b2) and (b3) and (not b4) OR
- Coming up with a good naming of states
is nontrivial
=> Problems are provably
computationally hard, people work on this
for specific settings

- Depending on what the BDD looks like,
logical formula may get complex

Want to learn more?

Consider taking: Logic for Systems

=> Learn about algorithms people have
made to represent these in more concise
ways, make tools to help, software to use

Compression: how to store text efficiently?

/ Wf(t/ /
L & Bys/ enan (asu)
32 </ CRNAL (micope)

ASCII: Use 8 bit bitstring for each character
=>4 * 8 bits = 32 bits total
=<
Storage: increases linearly with number of
characters
BigWiki: 141 million characters * 8 bits ~= 136MB

|ldea: language (and most data) isn’t random
Compression: use fewer bits to represent data that
appears more frequently

“e” appears more often than “x” —so maybe
we can use fewer bits?

Huffman coding:
- for some input data, find unique bitstring to
represent characters, use fewer bits for more
common letters

Takeaways:
=> L everaging patterns in data for efficiency
=> Encoding pattern in BDD structure (use to convert)

“this is an example of a huffman tree”

36
0 |
16 \D 20)
o \' /
8 8 8 = 12
o) | d 1 o \‘\' 0 1
e'ld @) (a]4 (2 4 4 5) 7
o/ \u ¢/ \ o ! , g)
n'2) @) [t]2) (m]2) (i]2) @ EE] s'2) @) [f[3
0 | 9 I o/ \l

o) [i A0 P [AR

de ¢

https://en.wikipedia.org/wiki/Huffman_coding

10011

Gt lol) Y
Z/)S B8)Ts

11000
00111

a 4 010
e 4 000
M Y f 3 1101
“A‘]’S h 2 1010
i 2 1000
h:]0/)] q m 2 0111
n 2 0010
Q . 0 , D z s 2 1011
t 2 0110
({ | 1 11001
o 1 00110
p 1
r 1
u 1
X 1

10010

