How would we represent a collection of nodes within, eg., a community?
=> Problem: what if we have a LOT of nodes?

/ ¢ OPE N
/ CONAVPIT, }/
[ 20 {hope: green J hope: yellow }
waterman: green waterman: yellow waterman: green
[m \] [hope: yellow
waterman: yellow waterman: yellow

hope: yellow

\

S 6-6 IV STATES
t/S/Fb,VS,Er.)

—>

SET 0F Sppe

S

How would represent membership in a collection?
Good initial choice is a hashset...



Problem: how do we name the nodes in a set?
=> Can be especially problematic when there are a lot of nodes (eg. really lage graph)

- ldea: Could assign a name to each Node object: {"node1", "node2", ...}

- Another idea: Could just use the memory addresses: {@1127, @4452, ...}
=> Storing a set of numbers (addresses) would use less space than strings)

What else could we do?

Claim: if we get creative about how we name the objects, can
represent membership in a space-efficient way
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Claim: if we get creative about how we name the objects, can represent membership in a
space-efficient way

Idea: give each state a name

- Smallest piece of information in a computer is a bit (0 or 1)

- Assign name to each state “bit string” (sequence of bits)’
For n states, how many bits? Log2(N)
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Using bitstrings would let us make the set:
Set[0100, 0101, 0110, 0111]

=> This is much smaller than using objects or addresses, but still grows linearly!

Can we do better?
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What can we do with this?

=> Using this idea, we can represent each state as a bitstring of
O’sand 1’s
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> Notation: we write state of individual bit as b0, b1, ..., where
b0 could be 0 or 1 (like a Boolean variable)

- Represent states VERY succinctly (lower space complexity)
- Can represent set of reachable states as a decision tree => Binary Decision Diagram (BDD)

BDD: How it works (high level)

- Each bit is like a step in a decision
tree: value is either 0 or 1. After that,
consider the next bit

- Each "leaf" is a decision on whether
or not the node is in the set

- Can make this very compact...




If we are clever about how to select the names, can reduce a large decision tree into a
small one (similar to the decision tree project!). For example, if b1==1 => always false
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Can also write this as a formula:
Reachable: (b1 ==0) AND (b2 == 1)

Could also write as: (not b1) and (b2)

==> To check if the state is safe, Don’t even need to store a list of reachable states! Just need to
check if the bitstring matches the formula!



Try it: what would the BDD look like if we picked these names instead?
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Formula would be a lot more complicated!

((not b1) and (not b2) and (not b3) and (not b4)) OR

Takeaways: ((b1) and (not b2) and (b3) and (not b4) OR
- Coming up with a good naming of states
is nontrivial
=> Problems are provably
computationally hard, people work on this
for specific settings

- Depending on what the BDD looks like,
logical formula may get complex

Want to learn more?

Consider taking: Logic for Systems

=> Learn about algorithms people have
made to represent these in more concise
ways, make tools to help, software to use




Compression: how to store text efficiently?
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ASCII: Use 8 bit bitstring for each character
=>4 * 8 bits = 32 bits total
=<
Storage: increases linearly with number of
characters
BigWiki: 141 million characters * 8 bits ~= 136MB

|ldea: language (and most data) isn’t random
Compression: use fewer bits to represent data that
appears more frequently

“e” appears more often than “x” —so maybe
we can use fewer bits?

Huffman coding:
- for some input data, find unique bitstring to
represent characters, use fewer bits for more
common letters

Takeaways:
=> L everaging patterns in data for efficiency
=> Encoding pattern in BDD structure (use to convert)

“this is an example of a huffman tree”
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https://en.wikipedia.org/wiki/Huffman_coding
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