
Warmup: A computer's file system organizes files into folders (also called directories): each directory
contains a collection of files and other directories. These directories may themselves, also contain files
and other directories, and so on …

What data structure stands out for this?

RO

SYSTEMO
USE

I
Yoo

Tang
Basf

It

"Working directory"

 - Folder where VSCode is open

 - When using a terminal, it's always "pointing"
to a directory (shown in the prompt)

Nested, recursive structure of directories
 => Organized as a tree!

you@your-system:~/Desktop/hw5$ pwd

/Users/you/Desktop/hw5

Paths: When we write paths, the path is usually relative to the working
directory:

 open("disk/file1.txt", "r")

 => Actual path is "./disk/file1.txt" => start at hw5, go to child

 directory "disk", then open "file1.txt"

Super important things about files and folders

 - Filesystem is organized like a tree. The tree has a root:

 MacOS/Linux: "/" on MacOS, "C:\" on Windows

 - All programs run from a certain "working directory" (abbreviated "."),

 which is some folder in the tree

 => This is the directory in the prompt when you open a terminal!

FYI: Working with paths is one of those super useful CS life skills that will be super
useful beyond CS 200. See page 4 for more notes on this!

Ex Y T TARGET 7

RETURN 20,2 SINCE 6 I

HOW COULD WE WRITE THIS EFFICIENTLY

FIRSTSTEP FINDNAIVE SOLUTIONFIRSTTHENTRY TO IMPROVE

IF I SEE 2 USE INDEX 0

IF I SEE 7 USE INDEX I

MAP FROM NEEDED VALUE INDEX

Back to CS 200 content...

Today: using data structures to support computation and algorithms

Given: a list of numbers, and a target number

Return the positions (indices) of two numbers in the list that sum to the target (as a set)

Assume that there is exactly one solution

Input list : [9,4,6,8,5], target 11

If we only touch 9 once, what can we remember about it?

If we see a 9 in position 0,

 => Know: if we later see a 2, there exists a pair that uses index 0

If we see a 4 in positions 1

 => if we later see a 7, there exists a pair with index 1

What data structure would help us remember this info???

Idea #1 (for using data structures to speed up computation):
Ask if you can remember information as you go along, so you can use it later

=> For more notes on how this works, see recording

class BinTree:

 left: BinTree

 right: BinTree

 value

def tree_to_list(b: BinTree):

 if b == None:

 return []

 else:

 	 	 convert b.right to list

 convert b.left to list

 	 return (combine left list, right
list, current value)

Might be easier if we need to do a lot of list-like
operations on this data

Idea #2: sometimes it helps to convert one data structure to
another

Have: tree

Want: all nodes in tree with value > k => filter operation

=> Know how to filter on lists, but not trees

1
START HERE

I
III Thousand

DESKTOP

HTHINGTXT

move up
BBS.FRPY'D

kEQE05

you@system:~/Desktop/hw5$ pwd

/Users/you/Desktop/hw5

you@system:~/Desktop/hw5$ ls

disk bbs.py repl.py

you@system:~/Desktop/hw5$ cd disk

you@system:~/Desktop/hw5/disk$ ls

file1.txt file2.txt

you@system:~/Desktop/hw5/disk$ cd ..

you@system:~/Desktop/hw5$ cd ..

you@system:~/Desktop$ ls

hw5 test.txt

Examples: working with paths / Navigating around the tree

 - In a path, ".." goes to the parent directory

	 open("../thing.txt") => start at hw5, go to parent, open thing.txt

 - Important terminal commands:

 - pwd: Show current working directory

 - cd <path>: change working directory (move around the tree!)

 - ls: show files in directory

(FYI: We're not going to test you on details about paths or terminal commands, but this is one of
those really useful skills to know about working with programs that will help you in any CS course
you might encounter in the future!)

