
Lecture 31 – Consider the characters
Q: Can you jump to a specific line in a file?

Example from HW5
DISK_PATH = pathlib.Path("disk")

def write_file():
with open(DISK_PATH/"test.txt", "w") as f:

f.write("hello world\n")
f.write("this is some text\n")
f.write("on a line\n")
f.write("four\n")
f.write("five\n")
f.write("six\n")

IN
IN

IN

IN
IN

How do you delete a certain line in a file?
/ Trie-ing to use data structures

A mental model for files in this class:

 => Can think about files as a list of lines, where each line is a string

 => Each line ends with a newline character (write as "\n"), which ends the line

This is a generally good model for working with text files, but it turns out that things are
actually a bit more complicated under the hood, which complicates things like jumping to a
specific line, or deleting a specific line.

For more discussion on files (and answers to "can you jump to a specific line?" and
"how to delete a line of a file?") see the end of these notes.

Design problems: Try and trie again

Design problem 1: A large-scale internet service assigns an internal ID number to each username. Here
are their key criteria:

● These IDs are used for various tasks (creating URLs, storing relationships between users, etc),
so lookup needs to be fast.

● The site also adds new users frequently, so assigning new IDs to new users has to be fast
● No two users can have the same ID
● Because the site has so many users, they are concerned about the space being used to store

this information

What data structure do you choose? How many memory addresses would your solution require, in terms
of the number U of users?

fSBJECTS

HASHMAP C ID USERNAME

an MEpiepNO
ii in

A fᵗ
I 1

Classic hashmap structure: each array slot contains a linked list of KVPairs:
=> Number of objects: 1 HashMap object + underlying array + (1 Node + 1 KVPair)*(U users)

(Also possible to be a bit more compact and merge the Node and KVPair into one object, but
structure remains the same.)

Design problem 2: Swype keyboards let
people type by passing their fingers over
the keys rather than hitting individual keys
separately. The software for such a
keyboard makes use of a dictionary of
available words to help figure out which
keys might be relevant, as well as which
keys might come “next” based on what a
user has typed so far.

What data structure do you use to store
this dictionary?

How will you use it to predict which keys
might come next?

https://www.flickr.com/photos/hahatango/3173033612

HASHSET

For example: How to keep all "qui" words together?
 => How to group words with a common prefix?

Could use a hashmap: prefix => (words with that prefix)

 However, lots of potential prefixes:

 	 q, qu, qui => hard to scale, because many duplicates

Can we do better???

An example dictionary: pie, piece, piano, pet, pail

Tries: Storing prefixes with a tree!

Idea: Share prefixes of words along branches of
the tree
=> some nodes are "endpoints" that store a
result (ie, a word in the dictionary, a decision,
etc.)
=> This is called a trie (reTRIEval)

Q: Does a trie actually save space?

 => Could become very large due to the number of possible branches. However, there are
some tricks to make the trie use fewer nodes (eg. reducing the long chains of nodes with no
branching--not important in this course)

Q: Could you embed a trie in an array?

=> Would only work if we had a defined structure (one slot for each character per branch, so
that every node has the same number of child nodes)

How would a trie work for design problem #2?
Can follow the trie to determine if the letters a user types are in
the dictionary:

 - For each letter the user enters, follow one node on the trie

 - Can tell when the path ends at a valid word

 - (From there, could possibly do some more computation to
figure out the next "closest" word, to help with prediction)

Back to Design Problem #1

Some usernames:

chen
chad
cami
carl
cary
. . .

11
A

1 I

USERS USERS USERS USERS USERS

What if we need to store a LOT of usernames??

Could represent usernames using a trie: time to look up a username would involve
searching the tree
=> Even with a lot of users, the search time is based on the number of characters in the
username (eg. a small, constant value, like 8 characters)

 => In some applications, this might be faster than using a hashmap, due to the time required to
hash the individual characters of each username. (This tradeoff isn't something we'd ask you to
make a decision about, but we want you to see the idea and understand why tries are cool.)

What's in a string? Basic version: ASCII Codes

Every character has a corresponding numeric value (“ascii code”)

● “A” is 65
● “M” is 77
● “T” is 84
● “1” is 49
● “4” is 52
● “8” is 56
● …

EEKITEN

for
(You don't need to know about how these
codes work, we just want you to see them.)

What does this have to do with jumping to a specific line in a file?

The newline character (\n) is just another character (ie, a number). The only difference is
that it has a special meaning: instead of "printing" as a letter or number, it tells the program
or terminal reading the file to go to the next line.

Every character has some numeric representation

 => A file is just a big, ordered sequence of characters

This is something you'll spend more time learning if you take a systems course (eg. CS 300 or CS
330). For CS 200, it's just helpful to know that files and strings are composed of characters,
which are really just numbers.

https://www.ascii-code.com/codechart

So what does readline() do?

=> readline() just scans the list of characters
until it finds the newline

This is actually just a linear search of all the
characters in the file!

Similarly, if you wanted to delete a line, would need to read the whole file in, and then write
again (without the line you want to delete)

 => Essentially, build the big array of characters all over again

So: can you jump to a specific line in a file?

=> Not with the tools that we have: don't know how far apart the newline
characters are--need to read the file line by line until you get to the line
you want

=> To learn how to do better, check out CS 300!

Looking closer at the file….

(View from a hex editor):

What does readline() do?

with open(DISK_PATH/"test.txt", "r") as f:
while True:

line = f.readline()
if line == "":

break

print(line.strip())

So: can you jump to a specific line in a file?

NEWLINGS

Just scans the list of
characters until it finds the
newline

File isn't an array of lines,
actually an array of characters

Don't know how far apart the newline characters are => need to read
the file line by line until you get to the line you want

If you wanted to delete a line, would need to
read the whole file in, and then write again
(without the line you want to delete)

 => Essentially, build the big array of characters
all over again

https://hexed.it/

