
Heap: A binary tree in which the highest-priority item is at the root and both the left and right subtrees are also
heaps

Key operations:
● get_max: constant time (just look at root)
● insert: O(log(N)) for N items assuming the tree is balanced
● remove_max: O(log(N)) for N items assuming the tree is balanced

Exercise: Which of the following are heaps? Which are balanced (whether or not they are heaps)?

Define “balance”:

Goal: implement heaps with the run-times stated above.

Try it: insert 8 into each of the following trees, while maintaining requirements

f 4 ONLY BALANCED

FEIGHTS EXAMPLE

y

6 14
a

Key operations:
 - get_max: constant time (just look at max)
 - insert: Add a new item => O(logN) for N items,
if the tree is balanced
 - remove_max: O(logN) if tree is balanced

at any node, height of left and right subtrees
differ by at most 1
Or: “How I filled up every row of the tree other
than the bottom-most one?”

insert:
Find blank spot to insert new 1.
element without breaking balance
Swap element up until result is heap2.

Requirements:
 - Result must be a heap
 - Can only modify one
branch of the tree (to
keep logN runtime)
 - Should stay balanced

Heap: A binary tree in which the highest-priority item is at the root and both the left and right subtrees are also
heaps

Exercise: Which of the following are heaps? Which are balanced (whether or not they are heaps)?

Define “balance”:

Goal: implement heaps with the run-times stated above.

Try it: insert 8 into each of the following trees, while maintaining requirements

HEIGHTI

4516 3 ONLY BALANCED

TREE

Requirements:
 - Result must be a heap
 - In order to get logN
runtime, can only modify
one branch of the tree
 - Should stay balanced

Key operations:
 get-max: constant time
 - insert: add new item O(logN) if tree is balanced
 - remove-max: O(logN)

at any node, height of left and right subtrees differ by at most 1
Or: "Have I filled up every row in the tree, other than
the bottom-most one?"

insert:
Find a blank spot to insert the new 1.
element, without breaking balance
Swap element up until result is a heap2.

Implementation: here’s a binary-tree class in Python

class BinTree:

def __init__(self, data, left=None, right=None):

self.left = left

self.right = right

self.data = data

a

\

b

\

c

/

d

unbalanced_tree = BinTree("a",
left=None,
right=BinTree("b",

left=None,
right=BinTree("c",

left=BinTree("d"),
right=None)))

BINTREE A

A

I
f

D

g
t

free

I
SECOND

THIRD

FIRST

insert:
Find blank spot to insert new element without 1.
breaking balance

 => Need way to know which spots are empty, would
need to store some extra info

Swap element up until result is heap 1.
 => Need to find node “above” you => requires a
doubly-linked tree (field for parent) (HW2)

Usually, use a different kind of representation that:
 - Is easy to find an open slot
 - Is easy to navigate up and down tree

To simplify: enforce that all inserts use the next
available slot in the last row of the tree (don’t have to
choose)

Aside on Python syntax: these are “keyword arguments” =>
arguments to a function specified by name. If you leave
them out, default value is used (here, None)

 => Can have functions with optional arguments!

How to create an easier implementation?

10

s
I

SECOND

FIRST

THIRD

SOLUTION EMBED TREEINSIDEAN ARRAY

itiIIiiilit.ti
ORANGE ARRAYINDICES

10
720

I Ex I HOLDS 5
LEFT 2 2 1
RIGHT 2 2 2

Parent1 5

To simplify: enforce that all inserts use the next
available slot in the last row of the tree (don’t have to
choose)

Easy to find next open spot: just look for first
element that’s empty

For some node at index i:
 - left(i) is at (i * 2) + 1
 - right(i) is at (i * 2) + 2
 - parent(i) is at
 floor((i - 1)/2)

 Why? We'll see next lecture, but here's the gist...

