Design Problem: A hospital emergency room needs to manage information about the patients who
need to be seen. Patients are treated in order of urgency (most urgent first). As each person comes in,
a record is created with their name, urgency level (a number, in which higher numbers have higher
priority), and a brief description of their injury.

Think about the kinds of operations that we have studied on sequences of data this semester:

o add Z,QDAM 70 po T/ESE GuickL)f

® remove

e getby positon ——=> QL‘ 7 6?(]16&7, E&; YLEENE)
e contains ﬁ/ﬂ/ﬁc Lﬁ.(,g //f)%)?_f/llt)ff

Which of these seem most important when managing the order in which to treat patients? Which
operations need to be the most efficient?

Priority queue (PQ): 3 fundamental operations

1. Insert a new item

2. Remove the maximum priority item

3. Get maximum priority item, without removing (peek)
=> These are the operations we want to prioritize

How do we build such a data structure from scratch? Consider the data structures that we have studied
so far: which seem to be suitable here?

e Linked List

e Array List

J/

E -« -
e Tree/Binary Search Tree /Ué/x f 646
e Hashmap/Dictionary ;

e HashSet/set

Class of our own design (e.g., graph)

Write the type of your proposed data structure for managing hospital triage data (in terms of types)

Priority queue (PQ): needs 3 operations

1. Insert a new item

2. Remove max-priority item

3. Get max-priority item (without removing) (peek)

How do we build one from scratch?

Some data structure: arrays, lists, trees, hash maps/dictionary, hash sets/
set, graphs

How might you use these? Which ones might be best?

HashSets/set
=> Not really a way to specify priority

HashMap/dict

Q) Key = priority, Value = item > We could implement a heap using one of these options,
@ Key = item, Value = priority but we would need to search the whole map O(N)

Linked list keep a sorted list

Array list - get-max: O(1) (pick first element)
- remove-max: O(1) for linked list, for array list would need to shift elements
to keep sorted order => O(N)
- insert: O(N) to find position in sorted list

Trees
We know one way to do an ordered representation with trees...

=> BST (Binary search tree): for any node, every smaller node is on the
left, any larger node is on the right

What if we used this as a priority queue? Y B ALAPLED y

F__’.ﬁ/‘“’/‘w 25 o\ AC,LAl{
§ Vawsot v /

/\ \p

0
\
7 () ’
insert, get-max : \ﬂA 7(NODE ALU»‘{J 7 \@

. — _ 216N
O(logN) if balanced | Bofﬂ)/‘ Rl
O(N) if unbalanced A AoBLeMATIe [P BST

/S OMNBALACED

What if we relax the rules a bit?
=> For a priority queue, we don’t need a total order like a BST.
What if we just keep the max item at the top??

- max item is at the root
- left and right subtrees are also heaps

DAT: 2,467 10,)2

/
NERP
Note: can have different valid representations for the same heap
(may be more or less-balanced... more on this later)

MAf

tfo A
7 WEAP IZ

Example: which of these are heaps?
DAra: [// 2}5'/7/5/2

& ® © 2]

S N
/ \ ! / ' l 5 /\z_
7. 5 ¢ N /
/ (S peapy”
f‘é%\ﬁ/ /%7)4 ﬂfﬁf?,/ ~ /:QUIVALW
THIC Svgrece SHoww / / 2 @
NAVE S~ AS pax KEAP
(woi~ BALAOCED)
TNoven)

Checking in on our priority queue goals: what can we infer about
the runtime of using a heap for a PQ?

Priority queue (PQ): needs 3 operations
1. Insert a new item => 2?7
2. Remove max-priority item => ?°?°?
3. Get max-priority item (without removing)
=> 0(1) => can just look at top of heap!

t
What about add and remove? / Fﬂ: M Emov!

é‘)/, ,Zt7’101/5’]2
A /
2N 7/ \ /

& () 7
[0 0 /7
Z.

/7 N5

) L
[NesT 7 Y
CANDIDATES / /
} Removing an element creates a “hole”, can
reorder subtree to fill it

To reorder, we only need to consider one “branch” of the
heap => If heap is balanced, this takes O (logN)

LONAT. JF WE wowr Y wseer [/ \7

Strategy: add to bottom, reorder until we

have a heap again
RESVLT

-
/m\f/ / \\v /N
q T (/]) 1 1
/ R / / ¢/
7 2z A a

Again, we only need to reorder one “branch” of the
heap => O(logN)

Qo 70 Somppesze ...

Priority queue (PQ): needs 3 operations

if heap is balanced:
1. Insert a new item => O(logN)
2. Remove max-priority item => O(logN)
3. Get max-priority item (without removing)
=> 0(1)

If heap is unbalanced, the insert/delete steps are harder:
- insert: O(N)
- remove max: O(N)
- get max: O(1)

Open questions (for next time) :
- How to find an empty spot to insert?
- How to keep the heap balanced to ensure logN runtime?

- What does “balanced” even mean, anyway?

