
Design Problem: A hospital emergency room needs to manage information about the patients who
need to be seen. Patients are treated in order of urgency (most urgent first). As each person comes in,
a record is created with their name, urgency level (a number, in which higher numbers have higher
priority), and a brief description of their injury.

Think about the kinds of operations that we have studied on sequences of data this semester:

● add

● remove

● get by position

● contains

Which of these seem most important when managing the order in which to treat patients? Which
operations need to be the most efficient?

How do we build such a data structure from scratch? Consider the data structures that we have studied
so far: which seem to be suitable here?

● Linked List

● Array List

● Tree/Binary Search Tree

● Hashmap/Dictionary

● HashSet/set

● Class of our own design (e.g., graph)

Write the type of your proposed data structure for managing hospital triage data (in terms of types)
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NEXT PAGE

Priority queue (PQ):  3 fundamental operations

 1. Insert a new item

 2. Remove the maximum priority item 

 3. Get maximum priority item, without removing (peek)



 => These are the operations we want to prioritize
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How do we build one from scratch?  



Some data structure:  arrays, lists, trees, hash maps/dictionary, hash sets/
set, graphs 



How might you use these?  Which ones might be best?  

Linked list 
Array list

HashSets/set 
=> Not really a way to specify priority

HashMap/dict 

Trees

Priority queue (PQ):  needs 3 operations

 1. Insert a new item

 2. Remove max-priority item

 3. Get max-priority item (without removing) (peek)




Key = priority, Value = item

Key = item, Value = priority

We could implement a heap using one of these options, 
but we would need to search the whole map O(N)

keep a sorted list

 - get-max:  O(1) (pick first element)

 - remove-max:  O(1) for linked list, for array list would need to shift elements 
to keep sorted order => O(N)

 - insert:  O(N) to find position in sorted list 

We know one way to do an ordered representation with trees…
=> BST (Binary search tree):  for any node, every smaller node is on the 
left, any larger node is on the right

What if we used this as a priority queue?

insert, get-max :  

             O(logN) if balanced

             O(N) if unbalanced
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Note: can have different valid representations for the same heap 
(may be more or less-balanced… more on this later)

What if we relax the rules a bit?  

 => For a priority queue, we don’t need a total order like a BST. 

What if we just keep the max item at the top??





Heap (binary max heap):  a binary tree (NOT a BST) with two constraints:  

    - max item is at the root

    - left and right subtrees are also heaps



































































































DATA 112,517,93

9 9 9 9
III 2 7 575 7 I 1

s

f z
5

y
1

HEAP I HEAPV
NOTAHEAP

EQUIVALENT

THIS SUBTREESHOULD I TO

HAVE SAS MAX HEAP
NOT BALANCED
THOUGH

Example:  which of these are heaps?  

Checking in on our priority queue goals:  what can we infer about 
the runtime of using a heap for a PQ?  

Priority queue (PQ):  needs 3 operations

 1. Insert a new item         => ???

 2. Remove max-priority item  => ???

 3. Get max-priority item (without removing) 

     => O(1) => can just look at top of heap!  
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What about add and remove?

Removing an element creates a “hole”, can 
reorder subtree to fill it

To reorder, we only need to consider one “branch” of the 
heap => If heap is balanced, this takes O(logN)

Strategy:  add to bottom, reorder until we 
have a heap again

Again, we only need to reorder one “branch” of the 
heap => O(logN)










































So to SUMMARIZE

Priority queue (PQ):  needs 3 operations



if heap is balanced:

 1. Insert a new item         => O(logN)

 2. Remove max-priority item  => O(logN)

 3. Get max-priority item (without removing) 

     => O(1)




If heap is unbalanced, the insert/delete steps are harder:

  - insert:  O(N)

  - remove_max:  O(N)

  - get_max:  O(1)



Open questions (for next time):

  - How to find an empty spot to insert?

  - How to keep the heap balanced to ensure logN runtime?  

  - What does “balanced” even mean, anyway?


