
Design Problem: A hospital emergency room needs to manage information about the patients who
need to be seen. Patients are treated in order of urgency (most urgent first). As each person comes in,
a record is created with their name, urgency level (a number, in which higher numbers have higher
priority), and a brief description of their injury.

Think about the kinds of operations that we have studied on sequences of data this semester:

● add

● remove

● get by position

● contains

Which of these seem most important when managing the order in which to treat patients? Which
operations need to be the most efficient?

How do we build such a data structure from scratch? Consider the data structures that we have studied
so far: which seem to be suitable here?

● Linked List

● Array List

● Tree/Binary Search Tree

● Hashmap/Dictionary

● HashSet/set

● Class of our own design (e.g., graph)

Write the type of your proposed data structure for managing hospital triage data (in terms of types)

WANT TO DO THESE QUICKLY

GETQUICKLY URGENCY
MAYBE LESS IMPORTANT

NEXT PAGE

Priority queue (PQ): 3 fundamental operations

 1. Insert a new item

 2. Remove the maximum priority item

 3. Get maximum priority item, without removing (peek)

 => These are the operations we want to prioritize

UNBALANCED

BALANCED BASYALIST

8 118 SIBLE Ty
I
4 10 18

To
MAXNODEALWAYS

AT BOTTOM RIGHT
PROBLEMATIC IFBST
IS UNBALANCED

How do we build one from scratch?

Some data structure: arrays, lists, trees, hash maps/dictionary, hash sets/
set, graphs

How might you use these? Which ones might be best?

Linked list
Array list

HashSets/set
=> Not really a way to specify priority

HashMap/dict

Trees

Priority queue (PQ): needs 3 operations

 1. Insert a new item

 2. Remove max-priority item

 3. Get max-priority item (without removing) (peek)

Key = priority, Value = item

Key = item, Value = priority

We could implement a heap using one of these options,
but we would need to search the whole map O(N)

keep a sorted list

 - get-max: O(1) (pick first element)

 - remove-max: O(1) for linked list, for array list would need to shift elements
to keep sorted order => O(N)

 - insert: O(N) to find position in sorted list

We know one way to do an ordered representation with trees…
=> BST (Binary search tree): for any node, every smaller node is on the
left, any larger node is on the right

What if we used this as a priority queue?

insert, get-max :

 O(logN) if balanced

 O(N) if unbalanced

DATA Z Y 8 9 10 12
HEAP I 1 HEAP

to 8

HEAP

MAY

ALSO A
HEAP

I
to

9
I
z 8

I
y

Note: can have different valid representations for the same heap
(may be more or less-balanced… more on this later)

What if we relax the rules a bit?

 => For a priority queue, we don’t need a total order like a BST.

What if we just keep the max item at the top??

Heap (binary max heap): a binary tree (NOT a BST) with two constraints:

 - max item is at the root

 - left and right subtrees are also heaps

DATA 112,517,93

9 9 9 9
III 2 7 575 7 I 1

s

f z
5

y
1

HEAP I HEAPV
NOTAHEAP

EQUIVALENT

THIS SUBTREESHOULD I TO

HAVE SAS MAX HEAP
NOT BALANCED
THOUGH

Example: which of these are heaps?

Checking in on our priority queue goals: what can we infer about
the runtime of using a heap for a PQ?

Priority queue (PQ): needs 3 operations

 1. Insert a new item => ???

 2. Remove max-priority item => ???

 3. Get max-priority item (without removing)

 => O(1) => can just look at top of heap!

EX REMOVE 12 of
Fdemkemovina 12

RESULT

1 s 7 1

4 pg Ég 49
8

I
I
2

WHAT IF WE WANT TO INSERT IT

RESULT

1 Ig o

z uk y E Y

What about add and remove?

Removing an element creates a “hole”, can
reorder subtree to fill it

To reorder, we only need to consider one “branch” of the
heap => If heap is balanced, this takes O(logN)

Strategy: add to bottom, reorder until we
have a heap again

Again, we only need to reorder one “branch” of the
heap => O(logN)

So to SUMMARIZE

Priority queue (PQ): needs 3 operations

if heap is balanced:

 1. Insert a new item => O(logN)

 2. Remove max-priority item => O(logN)

 3. Get max-priority item (without removing)

 => O(1)

If heap is unbalanced, the insert/delete steps are harder:

 - insert: O(N)

 - remove_max: O(N)

 - get_max: O(1)

Open questions (for next time):

 - How to find an empty spot to insert?

 - How to keep the heap balanced to ensure logN runtime?

 - What does “balanced” even mean, anyway?

