Continuing_from last class: goal was to succinctly represent set of “safe” program states

L0 VOO Qa: give each state a name
hope: green

- Smallest piece of information in a computer is a bit (0 or 1)
- Assign name to each state “bit string” (sequence of bits)’
For n states, how many bits? Log2(N)

hope: yellow
waterman: green

hope: yellow
waterman: yellow

PEPRESENT
O _ . -
— 2 SIATES =2 Memsio | =2 gy
) ———— Y Poss igte BirsTemes
7 STATESv 00 o1 (0 11 F 2 Birc
Our goal: represent set of safe
states

£ PosSIBLE BITSTRINGS

Could write as: ? " :7 G0

List[0100, 0101, 0110, 0111] 0%} 0o /)

This is much smaller than objects, /00 o] //o /7]
but still grows linearly!
=> 3 Birc

N bits => 2/~N possible “things” (in this case states)
OR

M states => log2(M) bits

log2(9) = 3.1 => 4 (need all strings to be same length)

— Qo oo QOOQ

— — — => Using this idea, we can represent each state as a bitstring of
waterman: green waterman: yellow waterman: green O,S and 1 ,S
N y QDI ___ ORD\
mnnnadn: yellow vh:a‘l,eev:ny\:::?vyvellow M green O } O O
~— e
O\\O
b/ bz bJ b Y
> Notation: we write state of individual bit as b0, b1, ..., where

b0 could be 0 or/1 (like a Boolean variable)

What can we do with this?

- Represent states VERY succinctly (lower space complexity)
- Can represent set of reachable states as a decision tree => Binary Decision Diagram (BDD)

BDD: How it works (high level)

- Run BFS to find reachable states

- Mark each leaf of BDD as reachable
for each state

- Can make a logical formula (a
boolean expression) to represent
reachable states

Reachable: (b1 == 0) AND (b2 == 1)
Could also write as: (not b1) and (b2)

==> To check if the state is safe, Don’t
even need to store a list of reachable
states! Just need to check if the
bitstring matches the formula!

Try it: what would the BDD look like if we picked these names instead?

\\

hope: green
waterman: yellow

hope: yellow
waterman: green

0D\
hope: green
waterman: green

\

hope: yellow
waterman: yellow

WO

hope: yellow
waterman: red

Takeaways:
- Coming up with a good naming of states
is nontrivial
=> Problems are provably
computationally hard, people work on this
for specific settings

- Depending on what the BDD looks like,
logical formula may get complex

Want to learn more?

Consider taking: Logic for Systems

=> Learn about algorithms people have
made to represent these in more concise
ways, make tools to help, software to use

0o o0
B)BZQB B'/

Formula would be a lot more complicated!
((not b1) and (not b2) and (not b3) and (not b4)) OR
((b1) and (not b2) and (b3) and (not b4) OR

Compression: how to store text efficiently? Ay "
this is an example of a huffman tree

0 |
/r Y ' =
Nare™ o ,
L & Bys/ A (asur) <& N <
12
32 p/ CNAL (omieope) SN YN N\ o/\!
) @ =9 @ o} &g
ASCII: Use 8 bit bitstring for each character o/\« ¢/\ o/\! O\ o/ \
=>4 8 bits = 32 bits total w2 @ [tf2 2 @ @)
o/ \I 9/ \/ o/ \l

Storage: increases linearly with number of £ A _ —
characters o'[1] x[1] [p4 E

BigWiki: 141 million characters * 8 bits ~= 136MB

=)
=
=

de ¢

: https://en.wikipedia.org/wiki/Huffman_coding
Idea: language (and most data) isn’t random

Compression: use fewer bits to represent data that

appears more frequently I Y
“e” appears more often than “x”—so maybe H AT. S

we can use fewer bits?

010
000
1101
1010
1000

h: [0 / [») q 0111

H . . 0010

Huffman cong. . . | @ 0)0 3 -
- for some input data, find unique bitstring to P
represent characters, use fewer bits for more 1001
common letters ({ e

Takeaways: G- lol) L/ .

=> Leveraging patterns in data for efficiency
=> Encoding pattern in BDD structure (use to convert) :‘7]S B)TS

11000
00111

= | == === NN IDNDIN| |

x c = || 5= o || =2 || @ > 3 ==l || =@ [V

10010

