
Large Graphs:
Representing Sets of States

Source URLs in slide notes

United Airlines USA route map

Twitter follower connections among
people who tagged the same conference

Zurich downtown transit

GRAPHS SO BIG THAT TECHNIQUE
WE KNOW FOR STORINGTRAVERSING
DON'TALWAYSWORK

URL from today’s lecture

• Stanford Large Network Dataset Collection
• http://snap.stanford.edu/data/index.html

http://snap.stanford.edu/data/index.html

USING GRAPHS TO MODEL SYSTEMS T SOFTWARE

Ino

3 POSSIBLE STATES RED
GREEN

YELLOW

State machine: use graph to represent a system or
process

Vertex: state system is in, properties about the
system (color of light)

Edge: events/transitions between states, represents
the sequence of steps the system may take

=> Important for embedded systems, testing, and
critical applications—can use tools to check that
system behaves according to certain constraints

WHAT ABOUT TWO CHATS

Now 3 3 9 POSSIBLE STATES

Isnt

Discuss: What would it mean for this system
to be unsafe?

=> Don’t want two lights to be green or yellow
at the same time.

(At least one light must be red at all times)

So how do we do this for representing lots of states?

List[node], set[node], …

How would you compute the reachable
states from a starting state?

What are some graph algorithms we
remember?

 - BFS

 - DFS

 - Dijkstra - weighted graphs

 - MST - trees

BFS ends up being the better choice

We can say a system is unsafe if we could reach an unsafe state from
any starting state

==> This graph is okay so long as we start in one of the safe states

Light_State: {red, green, yellow}

Two variables

Light_state Hope = Red

Light_state Waterman = Yellow

if timer_expires

 Hope = red

. . .

if something_else

 Hope = red

 Waterman = yellow

. . .

if yet_something_else

 Waterman = green

Imagine we had code to control these two traffic lights,
perhaps with various statements throughout the code
that changed them.

Since we could write any program we want, each
variable could take any combination of

{red, yellow, green}, so any of the 9 combinations are
technically possible! Even if we don’t want this behavior
to happen, it’s possible a bug could place the program
in an unsafe state!

This is where modeling programs can help: if we can
express the program’s possible states as a state
machine, we can use what we know about graphs
(determining reachability) to check that the system
obeys certain properties!

Q from lecture: If the system should never be in an unsafe state, why are those states
on the graph at all? Why not just have a graph of the 4 safe states?

How do we store the set of
reachable states?

Important for formal methods:
representing set of states
succinctly…can have a lot of states!

List[state], set[state]…

=> Linear in terms of “space
complexity”: how much memory is
required

2^200 atoms in universe

CPU: brain of computer: 2^2M
states

Need: succinct way to represent states

0 I 0 0
so

bi be b by

Idea: Give each state a name

 - Smallest piece of information in a computer is a “Bit” (0 or
1)

 - Assign name to each state is a “bit string”, or a sequence
of bits

	 	 For N states, how many bits would I need?

	 	 ceil(log2(n))

=> Represent each state as a sequence of 0’s and 1’s

Reachable: (b1 == 0) AND (b2 == 1)

Could also write as: (not b1) and (b2)

==> To check if the state is safe, Don’t
even need to store a list of reachable
states! Just need to check if the
bitstring matches the formula!

BDD: How it works (high level)

 - Run BFS to find reachable states

 - Mark each leaf of BDD as reachable
for each state

 - Can make a logical formula (a
boolean expression) to represent
reachable states

What can we do with this?

 - Represent states VERY succinctly (lower space complexity)

 - Can represent set of reachable states as a decision tree => Binary Decision Diagram

Note 4/17: We’ll continue from here on Wednesday (4/19)

00 0 O
B B2B By

Try it: what would the BDD look like if we picked
these names instead?

Formula would be a lot more complicated!

((not b1) and (not b2) and (not b3) and (not b4)) OR

((b1) and (not b2) and (b3) and (not b4) OR

…

Takeaways:

 - Coming up with a good naming of states
is nontrivial

 => Problems are provably
computationally hard, people work on this
for specific settings

 - Depending on what the BDD looks like,
logical formula may get complex

Want to learn more?

Consider taking: Logic for Systems

 => Learn about algorithms people have
made to represent these in more concise
ways, make tools to help, software to use

