Introduction to Dynamic Programming, pt.3 (in two dimensions!)

Kathi Fisler and Milda Zizyte
November 11, 2022

Objectives

By the end of these notes, you will know
e how to approach a 2-dimensional dynamic programming problem

In the previous two lectures, we searched for a way to optimize our selection of sweets from a display
case, and found the longest increasing subsequence in a list of numbers. Our input data for each problem
(the rating of each sweet or the list of numbers) was uni-dimensional, in that we had a set of options to
choose among that were ordered only in one dimension.

Today, we turn to a problem in which the options are ordered in two dimensions, each of which contributes
to which information can be considered as we optimize our solution.

1 Maximizing Halloween Candy

Imagine that you live in a neighborhood that is laid out in a grid. It’s Halloween, and you get to stop at
once house on each east-west street (in each row) to collect candy. You will start from some house in the
top row, then make your way down to the bottom row. From each house you visit, the next one has to
be either directly below or diagonally adjacent. The following image shows the idea (only some of the red
“next” arrows are present to avoid clutter). The blue highlights show the optimal choice.

3
o | :.
RN
1L\
*1’@\‘

2 5 17

/ 1\

7

4

1 @W‘

1.1 Recursive solution

Below we show the un-optimized recursive program that solves this problem, in pseudocode. The key
computation this code makes on every house (except for houses in the last row) is that the maximum pieces
of candy we can get by going through a certain house is:

(num. pieces of candy from that house) +

max (candy from going through the 2 or 3 neighboring houses in the street below).

O~ O T W

[I R e N e e e e ol
N = O © 00O Uik W - OO

The expression depends on "the 2 or 3 neighboring houses” because some houses are at the edge of the
neighborhood and do not have a house diagonally-left (for leftmost houses) or diagonally-right (for rightmost
houses).

assume candy_available is a global variable that is a 2d array

of how much candy you can get at each house; indexed By
candy_available [house _row] [house col]

H=

num_rows 1is the number of rows 1in candy_available
num _cols 1s the number of columns in candy_available

this function computes the maximum candy we can get by going through the house
at the address (house row, house col)
max_candy_through_house (house_row, house_col) :
if house_row == num_rows — 1l: # 1f we are at the last row of houses,
just give back the candy at that house
return candy_available[house_row] [house_col]
else:
prev_houses_candy = []
for each candidate_col (the possible houses diagonally and directly below) :
compute max_candy_through_house (house_row + 1, candidate_col)
append result to prev_houses_candy

candy at this house + the max we can get by going through the houses below
return candy_available[house_row] [house_col] + max (prev_houses_candy)

To get the final answer, we would call max_candy_through_house on every house in row 0, and take the
maximum over all of those results.

1.2 The DP solution

We can convert this solution to DP by storing the result of each recursive call in a table (2d array), in
the order in which the calls for the recursive code would finish (that is, last row to first row). To see the
computation that allows us to reach the optimal outcome, you can look at the Google Sheet linked to the
notes page of this lecture, which computes a table from the input data (gray in the sheet). There are some
light orange tables that show example computations for this dynamic programming approach, which we
discuss in the next paragraph. For now, try changing the values in the gray cells to see how they affect the
final outcome (the bottom-right light orange table).

We fill out the bottom row of the orange table to be equal to the pieces of candy at each of the houses
in the bottom street, as our base case. Then, we can build up the rest of the table using the information
about the houses (gray table) and the information we have computed so far about the optimal route (orange
table). The table in the middle-left of the sheet shows numerical examples of these computations, and the
table in the bottom-left of the sheet translates these examples to spreadsheet formulas. The bottom-right
table actually computes the values according to these formulas.

Note that the first part of the computation comes from the gray table, because it is the new piece of
information we are introducing about the house. The next part of the computation comes from the lower
row in the orange table, because it is the computation we are using that tells us the optimal route we have
computed so far (through the houses below the house in question).

To code the DP solution up, we would essentially create the orange table from the sheet (as a 2d array),
following the examples/formulas shown on the left side of the sheet: we would first initialze a table the same
size as our input, and populate it bottom-to-top. The recursive calls would be replaced with lookups into
the relevant places in the table.

In your seamcarve assignment, you are performing this same computation, but with max replaced by
min, so we are leaving the Python DP code to you. The code/console that is posted on the class lectures

page shows some examples of working with 2d arrays in Python, which we haven’t done before.

2

Summary

What should you take from the DP segment?

If you have a piece of functional (no mutation) code that makes the same call on the same inputs
multiple times, you can save time by storing the previously-computed results in a data structure and
retrieving them later.

Search-based problems often satisfy this pattern. In search-based problems, we are looking to find (a)
a solution, that (b) optimizes for some attribute of the data. In these notes, we have shown you how
to make data structures to hold the results of both the optimized attribute and the solution paths as
you run the program.

A program modified to use dynamic programming will run only once on each unique input value.
Dynamic programming saves on time by using more space.

We used arrays as the data structure for previously-computed inputs here (rather than, say, hashtables)
partly because you will often see DP problems solved with arrays (and we want you to be prepared for
interviews). You could have used different data structures in practice.

Starting from a working recursive solution without optimization can ease the process of writing the
optimized solution.

