Introduction to Dynamic Programming

Kathi Fisler and Milda Zizyte
November 7, 2022

Motivating Question

How can we quickly search for optimal answers among sets of items?

Objectives

By the end of these notes, you will know
e how to analyze a recursive program that does the same computation multiple times

e how to approach a 1-dimensional dynamic programming problem

1 Searching for Solutions: the Sweets problem

Here’s a depiction of a store-counter of sweets:

’ Chocolate \ Strawberry \ Vanilla \ Pistachio \ Raspberry

Brock wants to purchase a number of sweets, since they’re easy to carry around when he’s got work to
do, but the shop owner has a particular (and odd) rule: he may not purchase two adjacent sweets.
For example, in the above arrangement, he cannot purchase both strawberry and vanilla sweets.

Each flavor of sweet has a positive (non-negative and nonzero) tastiness rating based on how tasty that
flavor is. Our goal will be to help Brock figure out the best set of sweets to purchase—that is, the set of
sweets with the maximum sum of their tasty values while following the shop owner’s rule.

Let’s see the idea with an example. Assume that the five sweet flavors have the following tastiness values:
[3,10,12,16,4]. By the rules, you could select any single sweet, or one of the following combinations (in terms
of tastiness values):

e 3 +12+ 4
e 3+ 16

e 3+4

10 + 16

10 + 4

12 + 4

0~ O Ot W

The best score comes from taking 10 + 16 (Strawberry and Pistachio) — fewer sweets, but more tasty.

This is a brute-force method, but it would better for us to search for a good choice. The search will
consider all of the combinations, but systematically. Here’s a sketch of how we might do this (where recursive
calls would start new searches from Strawberry and Vanilla as part of computing the answer for Chocolate):

could pick Chocolate,

then continue picking
from Vanilla

| Chocolate | Strawberry | Vanilla | Pistachio Raspberry

or skip Chocolate
and start picking
from Strawberry

Look at the following code that gives a naive recursive solution to computing the max tastiness. This
version assumes that the tastiness scores for these flavors are stored in a list. Try to convince yourself that
it would compute the same answer that you worked out for the concrete example above.

sweets_picker = pickSweets (our_sweets_1lst)
print (sweets_picker.pick_ sweets())

Stop and Think: What is the running time of this code, in terms of the number of sweets in the
collection?
One way to think about this is to unroll the recursive calls that get made into a tree, as follows:

Pick Chocolate?

no yes
Pick Strawberry? Pick Vanilla?
no yes no yes
Pick Vanilla? Pick Pistachio? Pick Pistachio? Raspberry!
no
T e N e \\
Pick Pistachio? Raspberry! Raspberry! Pistachio! Raspberry! Pistachio!
A \yes
Raspberry! Pistachio!

Stop and Think: Now that you see the tree, what is the running time of this code? Think about how
many nodes are in this tree.

A mostly-balanced tree of height n has O(2™) nodes (exponential). Looking down the leftmost branch, the
depth of the tree matches the number of flavors. Our naive recursive solution is therefore exponential-time.
That’s not a problem with 5 flavors, but optimization problems often have large amounts of data.

1.1 Avoiding Redundant Computation

Looking at the tree, we see some subtrees appear more than once. The tree from Vanilla appears twice, and
that from Pistachio appears three times. The same value gets returned from each computation on Vanilla,
and the same for Pistachio.

Pick Chocolate?

Pick Strawberry? Pick Vanilla?

yes

Raspberry!

If we are worried about runtime here, perhaps we could avoid repeating a computation to save time.
Specifically, if we actually expanded out the recursive calls only once per flavor, somehow saving the results
of each call, this computation could be done in linear time instead.

How might we do this in code, however?

If we look down the tree, we see that smaller redundant computations fit inside larger redundant com-
putations. That is, to compute whether we pick vanilla, we first compute whether to pick pistachio. It
seems like the solution is to work from the end of the list backwards, first computing which sweets to pick
in the {Raspberry} sublist, then which sweets to pick in the {Pistachio, Raspberry} sublist, then {Vanilla,
Pistachio, Raspbery}, and so on. We need to have a way of storing the previously computed results and
associate it with the sublist (for example, associate the sublist starting with Raspberry with the tastiness
of 4, the sublist starting with Pistachio with the tastiness of 16, the sublist starting with Vanilla with the
tastiness of 16, and so on).

If we move backwards through the list (initializing the optimal value for the {Raspberry} sublist to be 4
and the optimal value for the {Pistachio, Raspberry} sublist to be 16), we can use the pre-computed values
to directly compute the next values:

Flavor: Chocolate Strawberry Vanilla Pistachio Raspberry

Rating: 3 10 12 16 4
Optimal answer: | max(3 +Q.Q) max(10 H0D.Q) max(12 +O,Q)
=26 =26 =16 16 14

Many problems like this store the “previously computed” data in arrays. This makes sense when there
is already a way to associate the items with array indices. For the sweets problem, we can use position in
the sequence of flavors as the indices. Hence, we would store the tastiness result of the sublist starting with
Vanilla at index 2 of the array, because Vanilla is at index 2 of the input array. We will explore what this
looks like in code in the next lecture!

