~ Manhattan

T T L

MT1379GE
0335-CAB3

oo 245
ot o 20 N

United States
transmission grid
Source: FEMA

Euler’s “Seven Bridges of Kénigsberg (1736)

)\ NINGSHERGA

TN e ;:

. EER sw.'“

e BHE ."‘f*» 33“3’

T "\-

Problem discussed in lecture: constructing
an electrical network in Moravia (Boruvka,
1926)

Creating electrical networks Nor %ﬁ/)Vé T

wioe GrRAPA
Requirements Crane 45 MhosT 8E COMECTED
- Use smallest length of wire St||es 15 70‘57145&
possible
=> Minimum cost 0 Ger| Big Lake
- Bring electricity to all cities
=> Spanning all cities @ \ 5 45
- Don’t want unnecessary
connections between cities Sheffield -
Ozona

=> No_cycles :‘7/1,‘,_(7’ BE A TRGE
& 7 i s

s KM OM
@Z/Crane\ailes)Q MIN @)< o A TE(% c;aez)
~

50 15 Crane 45
Girvin = Big Lake / 50 Stiles {
Girvin
50 % 45 Big Lake

Sheffield \ /
35— Ozna

Gope: fmo A Lwmpp ppns_spee (ar) 55— ouna

This graph has two possible MSTs:

Crane 45 Crane 45 ._.fng /

20 / Stiles 20 / Stiles /
15 15
Girvin T~ Girvin B "/‘U’J Ct
g0 Biglake g0 Biglake /

\/ \/

Sheffield Sheffield
* Ozona $ Ozona

Examples of MST Algorithms

18 . .
Jarnik’s (1930) / Prim’s (1956)
Crane 45 17’01("0 CBEN'C
20 // \\\\\\~Sﬁbs U) LI)] - Choose random starting node, build
50 { @)IGLE' tree from there
Girvin

T a———— Biglake

60
50\ M 45
Sheffield —
35 Ozona

Crane 45
20 / \ Stiles 75
Girvin S
g0 Biglake

N

Sheffield
$ Oz

ona

Crane 45

20 / 50 Stiles ;5
Girvin T

60\ Big Lake
;B\\\ /////1ﬂ;///

Sheffield ——o.
35 Oz

45

ona

- Of all possible edges coming out of
tree, add smallest edge that doesn’t
introduce a cycle

=> Minimum, tree
- Stop once you’ve connected all cities

=> Recompute best edge each time we add
to tree

Kruskal’s

- First, sort all edges by weight (ie,
make a priority queue of edges)

- For each step, select smallest edge
that doesn’t introduce a cycle

- Stop when you have all cities in a
single tree

=> Don’t need to recompute PQ each time,
but has one big data structure

Sollin/Boruvka’s

- Cities pair off to form “optimal”
collectives

- Collectives repeatedly try to connect
to each other until we have a spanning
tree

=> Can work in parallel

sort the edges from do kruskal’s algorithmiin
cheapest to most parallel (each node be a
expensive; each iteration component, keep

adds cheapest edge that merging components

Approach

Data Structure Used

Must Be Able To

pick random start node
each iteration, add the
cheapest edge that won’t
create a cycle

won’t make a cycke into an overall tree)
priority queue of edges sorted list of edges
that connect node “in” the sorted list of edges connected to each
tree to one outside the tree component
maintain the priority
queue as nodes/edges check that next cheapest

work and coordinate

were added to the tree, edge won'’t createa :
process in parallel

check that next cheapest cycle
edge won’t create a cycle

=) [RAEDFA W CoapIpTION 7 IATA STrocrvnes

