At worst, |V| times through the while loop to check

_DF _g KUNT']ME f_ each vertex

while (! toCheck.isEmpty()) {

d

Vertex<T> checkingVertex = toCheck.removelast(); // removeFirst () for BFS

e s
i\ if
@K. return true; A vertex might have |V| -1

} DM ) ? neighbors

for (Vertex<T> neighbor : checkingVertex.getOutgoing()) {

if (lvisi ins (neighbor)) 0[')
visited.add (neighbor) ;
S—

toCheck.addLast (neighbor) ;

) INITIAL ESTIATE - /V/'/’//’O(/'/[z)

(dest.equals (checkingVertex)) {

HOWEVER, vertices aren’t the only thing that
contributes to runtime in graph algorithms.
The two groups here have the same number
of vertices, but the oneon the right has more
edges, so it will take longer to run.
Therefore it’s important/to measure the
runtime of graph algorithms according to
both:

|V|: The size of the set of vertices

|E|: The size of the set of edges



while (! toCheck.isEmpty()) {

Vertex<T> checkingVertex = toCheck.removelast(); // removeFirst () for BFS

if

}

If we consider these operations across|all

(aest-con eSS eenxsy | iterations of the while loop, they’ll contribute

return true; O(|V|) to the runtime

for (Vertex<T> neighbor : checkingVertex.getOutgoing()) {

}

if (!visited.contains (neighbor)) {

visited.add (neighbor) ; Q: What runtime will these lines (highlighted in blue)
O GREEE— o 7) ; contgﬁ;lt)e across all iterations of the loop?
=>

Why? Each time we visit a vertex (while loop), we check the edges corresponding to
that vertex’s neighbors only. Across all-iterations of the loop, this means that we check

}é,/)l/” /7(.E each edge exactly once. For an example, take a look at the shading in this graph

Where we’ve written out the set of vertices and edges and try to match it to the code.

A — P Venzeee: ABCD ’

i/f Epect: MWE

820
c» B

Therefore, final runtime is the combination of these contributions.
FivdL Rowmmg

Why isn’t it O(|V] * |E|])? Even though the for loop is nested inside the
while loop; it runs on a different subset of E each time (ie, the neighbors
of checkingVertex). In total, we end up checking each edge exactly once,

so the total runtime is time to loop over each vertex (|V|) plus the time to O / V ._/., Z.. l
loop over each edge (|E|).

Take a look at the graph on this page and the typed notes for more
details.



Runtime for Dijkstra

toCheckQueue = V (prioritized on routeDist)J 0 ’
(1)

cameFrom = empty map

for v in V:
SR ] 1)
v.routeDist = inf
source.routebDist = 0 /-vAs before, this loop runs |V| times

while toCheckQueue is not em;fy:
B o e ey o ()é_jemove from ideal priority queue: O(log(|v|)
for neighbor in checkingV’s neighbors:
if checkingV.routeDist + cost (checkingV, neighbor) < neighbor.routeDist:C}(ﬁl)
neighbor.routeDist = checkingV.routeDist + cost (checkingV, neighbor) C){))
cameFrom.add (neighbor -> checkingV) (D(l)

toCheckQueue.decreaseValue(neighborﬁé:—-dem@asevmuehascxbgdvb
(with optimized priority queue implementation—see

notes for details)

backtrack from dest to source through cameFroW~
~ouv])

—

= O (wi+)e1)-deg(V!]

4

0 ,///+M%V@+ |



Another topic: Common question on HW3

KVhye.

How to compare hash tables?

Kg/; 100
Vac: A

NAe

~

Veri Z1Z
Var: C

KVhne

Kg}'; 100
a: A

ryd
LA

Khye

/
1\

Key. l1©
Var: B

K/

Vey. 212
V- C

Khne
Key: 110

Va: B

Q: Are hash tables A and B equal?

From the programmer’s point of view, we want to be able to the
HashTable class without thinking about the implementation
underneath—so even though they use arrays of different sizes,
they should be equal.

How do we compare them? Two hash tables are equal if they
contain the same sets of KV pairs.

One way to start implementing this would be to check each KVPair
and make sure it exists in the other table and has the same value

for each bucket in table:
for each KVPair p|in bucket:
if (otherTable.contains (p.key) &&
otherTable.get (p.key) .equals (p.value)) {

/] .
//



