

I

od

INITIAL ESTIMATE IU.lu 0Gu12

A vertex might have |V| -1
neighbors

HOWEVER, vertices aren’t the only thing that
contributes to runtime in graph algorithms.

The two groups here have the same number
of vertices, but the one on the right has more
edges, so it will take longer to run.

Therefore it’s important to measure the
runtime of graph algorithms according to
both:

 |V|: The size of the set of vertices

 |E|: The size of the set of edges

At worst, |V| times through the while loop to check
each vertex

i

B VegitiBCftic
Ees A B

DoD
Bo D
Co B

FINAL RUNTIME

O Nlt El

If we consider these operations across all
iterations of the while loop, they’ll contribute

O(|V|) to the runtime

Q: What runtime will these lines (highlighted in blue)
contribute across all iterations of the loop?
 => O(|E|)
Why? Each time we visit a vertex (while loop), we check the edges corresponding to
that vertex’s neighbors only. Across all iterations of the loop, this means that we check
each edge exactly once. For an example, take a look at the shading in this graph
where we’ve written out the set of vertices and edges and try to match it to the code.

Therefore, final runtime is the combination of these contributions.

Why isn’t it O(|V| * |E|)? Even though the for loop is nested inside the
while loop, it runs on a different subset of E each time (ie, the neighbors
of checkingVertex). In total, we end up checking each edge exactly once,
so the total runtime is time to loop over each vertex (|V|) plus the time to
loop over each edge (|E|).

Take a look at the graph on this page and the typed notes for more
details.

A Joint

ooo

f

09

Il
0401

0 Ht Weyandt E dog
O Nlt El log Irl

Runtime for Dijkstra

As before, this loop runs |V| times

Remove from ideal priority queue: O(log(|v|)

decreaseValue has O(log(|V|)

(with optimized priority queue implementation—see
notes for details)

KUPAR KUPAR
KEY 100 key 110

Vai A Vai B

A It r

VAL C

Vai A

KUPAR

key 110

KVPAIR

VAL C

Q: Are hash tables A and B equal?

From the programmer’s point of view, we want to be able to the
HashTable class without thinking about the implementation
underneath—so even though they use arrays of different sizes,
they should be equal.

How do we compare them? Two hash tables are equal if they
contain the same sets of KV pairs.

One way to start implementing this would be to check each KVPair
and make sure it exists in the other table and has the same value

for each bucket in table:
 for each KVPair p in bucket:
 if (otherTable.contains(p.key) &&
 otherTable.get(p.key).equals(p.value)){
 // . . .
 }
 // . . .

Another topic: Common question on HW3
How to compare hash tables?

