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When checking a node:  for each of its neighbors, check if cost to reach

@3 Keep track of nodes we haven’t checked neighbor through current node is less than known best cost.

yet in a priority queue—at each step, remove the If lower cost found, update costs, cameFrom
node with the least cost (Example shown here for checking if PVD->HAR is better than current

cost for BOS-HAR)
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- “Table” of costs reflects the lowest cost from BOS (the source) to

every other node
- Can use backtrack through canReach from dest -> source to find

the least cost path (example on page 3)

} Dijkstra is called a shortest path algorithm because it can find the

See page 6 of this PDE (or the typed notes)

for a pseudocode version of the algorithm least-cost path from source to any other node




Handout version for reference

Dijkstra’s algorithm
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Find the cheapest route from Boston to NYC
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Representing mazes as graphs

Sunday, October 23, 2022 4:54 PM
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Solving the maze = finding route (DFS or
BFS) from vertex that represents starting
cell to vertex that represents ending cell



Bigger maze comparison

Monday, October 24, 2022

1:02 PM

(Attribution: Pages 4-5 drawn by Milda from Fall 2022 version)
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Will go down a path until it
reaches a dead end and then
search from last-seen
branching-off point
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Will

"fan out" from the

beginning of the maze
(tracking many routes at

once)
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Prioritizes based on

distance to the end

-- turns

out to be fastest for most

mazes

A note on how these mazes were Llabeled: the number represents the timestep when that cell was *added* to the
toCheck stack/queue/priority queue. Neighbors are checked in the order right, up, left, down (a different ordering

can result in different numberings/traversals for the mazes). For A*, Manhattan distance is used and ties are

broken by considering the cell that was added to the PQ earlier (has a lLower timestep number). Colors change every

20 steps

Could we use Dijktra’s algorithm to search the maze? BFS/DFS/A* are search algorithms (goal: find path to destination), whereas Dijkstra
shortest path algorithm (ie, find shortest path to any node from source) —these are different types of algorithms and best-suited for
different use cases! We’ll talk about the runtime for BFS/DFS/Dijkstra in the next class.



BFS/DFS Pseudocode

while (! toCheck.isEmpty()) {
Vertex<T> checkingVertex = toCheck.removelLast(); // removeFirst() for BFS
if (dest.equals (checkingVertex)) {

return true;
}
for (Vertex<T> neighbor : checkingVertex.getOutgoing()) {
if (!visited.contains (neighbor)) {
visited.add (neighbor) ;
toCheck.addLast (neighbor) ;

Dijkstra Pseudocode

toCheckQueue = V (prioritized on routeDist)

cameFrom = empty map

for v in V:
v.routeDist = inf

source.routeDist = 0

while toCheckQueue is not empty:
checkingV = toCheckQueue.removeMin ()
for neighbor in checkingV’s neighbors:
if checkingV.routeDist + cost (checkingV, neighbor) < neighbor.routeDist:
neighbor.routeDist = checkingV.routeDist + cost (checkingV, neighbor)
cameFrom.add (neighbor -> checkingV)

toCheckQueue.decreaseValue (neighbor)

backtrack from dest to source through cameFrom



