Dijkstra’s algorithm example® F /NO w 77/4 7 ﬁOf _?/U)&C 7
PEST Disrance
Mot | Seen So rae CAME Feon
Boc | O PVp > Bos

L | oo Upe = Bof PYVD

N ﬁg%w Lye = prb [WR.

7|98 10 /70 AL

201

When checking a node: for each of its neighbors, check if cost to reach

@3 Keep track of nodes we haven’t checked neighbor through current node is less than known best cost.

yet in a priority queue—at each step, remove the If lower cost found, update costs, cameFrom
node with the least cost (Example shown here for checking if PVD->HAR is better than current

cost for BOS-HAR)

Order in which nodes are removed from PQ E 6 } + g—O Z 30—0
B}SS 7\/D H/(R I7H r\pé C ' O+ ‘
(2. } 5 @Results
- “Table” of costs reflects the lowest cost from BOS (the source) to

every other node
- Can use backtrack through canReach from dest -> source to find

the least cost path (example on page 3)

} Dijkstra is called a shortest path algorithm because it can find the

See page 6 of this PDE (or the typed notes)

for a pseudocode version of the algorithm least-cost path from source to any other node

Handout version for reference

Dijkstra’s algorithm

201

Find the cheapest route from Boston to NYC

toCheckPQ cameFrom

PvD-> BoS
NAe=> B8 PUD
NIc > Y0 NAR
pol [0 ITA -2 NAR.

pc |

NAL |7= 360 o
[TH £ g0
AYC |of 280)00

Name | Route Distance

PvD 30
Order in which items were removed from
toCheckPQ:

Bos, PID, NAE, /71, Mre,
A s

IMQ,) 1O Z)ﬂL E CAN '/5/&% 70 5J‘-“7’ SNot7t:87~ PATH ; |
-‘—’7 ° CATRACK IME / look OP)0 o CrECK. WA DEST
GoAL: Bok =7 gy
\ ; €] 2 @
CAME Feon Bo¢ —> WD —s AUr. —> V)X
& PVp > Bos % 1
OBt P ple
B vye = PO NAC T
/A 2 NAL
e 2174

For

more info, see type

2d/whi

teboa

rd notes from lecture 19

Representing mazes as graphs

Sunday, October 23, 2022 4:54 PM

T 0-0-09@
T —O~0O

1T

Solving the maze = finding route (DFS or
BFS) from vertex that represents starting
cell to vertex that represents ending cell

Bigger maze comparison

Monday, October 24, 2022

1:02 PM

(Attribution: Pages 4-5 drawn by Milda from Fall 2022 version)

B M

B g In

3 |$ QA fce

A ¢! IG,m
45 6 I O
245 99 23]%0 $7 98] ob 101 us)aa

19 36 1

Jon a1 fimfw

WA WS W T lMI\b_l‘lD

O 105 102 161

40 81 37 33 3495 16 93 96 97 4t

Will go down a path until it
reaches a dead end and then
search from last-seen
branching-off point

= XY

I
o B P

2 & 9] 9 iy 1, |

»5] B T S
ol

al WIiB)

0 14615215t 16d

IJ L 15 126 11l JI610 1S 120 s W 0F[ns IJ 5[0
| [M\Rsd A2 96 (00104 m[g 13) [CTRRLS | \[26 A B
J | el > \5) 64 A BN Y4 J A St o
[[7 3155 53 51 s v 7 0} o\ A osfi &s

I_ _lss | M 163 59 ST [0 50 52)e0 61 63 12 35 I— oz V14| J2425]27 51 St 55 sH

uumuﬂ»nﬁ&mmm| A GHLH 50)26 38 3 M6 48 |51 53 GAl 1a 115 1624k
1318 1225 2e)zo 2\ 3L Jui 39 uofie ws| wd 3\ 33|16 52 Biguo L e 36V 105 WA 23 TAR23 20 5V]\ 53 WO
G 21]ea 6fer Gofsyfur us 44 (5 1 [ve ?ﬂlg_slz W] \%5 g 1y 20 WOl v LA Y50 e\ P
sfeo fin frofes Gefsa fse e 2|z w oy fo [s@ folu
m s (L olesles sels 5o l4r ue 22 Vo 0 TH RN
o o £ 53 ‘\o il e () P) S 2o (31 13 150 5
) T |4 sz Mo

| T obfioeTin i ™ IS (6 R \R VIO iy

X \lo \25
04 \‘zl
\

Will

"fan out" from the

beginning of the maze
(tracking many routes at

once)

A«

(ghofy N

Prioritizes based on

distance to the end

-- turns

out to be fastest for most

mazes

A note on how these mazes were Llabeled: the number represents the timestep when that cell was *added* to the
toCheck stack/queue/priority queue. Neighbors are checked in the order right, up, left, down (a different ordering

can result in different numberings/traversals for the mazes). For A*, Manhattan distance is used and ties are

broken by considering the cell that was added to the PQ earlier (has a lLower timestep number). Colors change every

20 steps

Could we use Dijktra’s algorithm to search the maze? BFS/DFS/A* are search algorithms (goal: find path to destination), whereas Dijkstra
shortest path algorithm (ie, find shortest path to any node from source) —these are different types of algorithms and best-suited for
different use cases! We’ll talk about the runtime for BFS/DFS/Dijkstra in the next class.

BFS/DFS Pseudocode

while (! toCheck.isEmpty()) {
Vertex<T> checkingVertex = toCheck.removelLast(); // removeFirst() for BFS
if (dest.equals (checkingVertex)) {

return true;
}
for (Vertex<T> neighbor : checkingVertex.getOutgoing()) {
if (!visited.contains (neighbor)) {
visited.add (neighbor) ;
toCheck.addLast (neighbor) ;

Dijkstra Pseudocode

toCheckQueue = V (prioritized on routeDist)

cameFrom = empty map

for v in V:
v.routeDist = inf

source.routeDist = 0

while toCheckQueue is not empty:
checkingV = toCheckQueue.removeMin ()
for neighbor in checkingV’s neighbors:
if checkingV.routeDist + cost (checkingV, neighbor) < neighbor.routeDist:
neighbor.routeDist = checkingV.routeDist + cost (checkingV, neighbor)
cameFrom.add (neighbor -> checkingV)

toCheckQueue.decreaseValue (neighbor)

backtrack from dest to source through cameFrom

