

FIND CHEPPESI PATH BOSONIC

BESTDISTANCE
NODE SEEN SO FAR CAMEFROM

Bfs O PUD Bos
Df 0291 DAR BOSPUD

HAR 300 80 NYC PAHAR
X 90 ITH HAR

Nyc 8280 100 DCOITHs

PA 430

EG 30 50 L 300

i z ly ly f

I

BOS PVD HAR ITH NYC DC

When checking a node: for each of its neighbors, check if cost to reach
neighbor through current node is less than known best cost.

If lower cost found, update costs, cameFrom

(Example shown here for checking if PVD->HAR is better than current
cost for BOS-HAR)

PQ: Keep track of nodes we haven’t checked
yet in a priority queue—at each step, remove the
node with the least cost

Order in which nodes are removed from PQ

Dijkstra’s algorithm example

Results

 - “Table” of costs reflects the lowest cost from BOS (the source) to
every other node

 - Can use backtrack through canReach from dest -> source to find
the least cost path (example on page 3)

Dijkstra is called a shortest path algorithm because it can find the
least-cost path from source to any other node

See page 6 of this PDF (or the typed notes)
for a pseudocode version of the algorithm

Dijkstra’s algorithm

Find the cheapest route from Boston to NYC

toCheckPQ

Name Route Distance

Order in which items were removed from
toCheckPQ:

cameFrom

PUD BOS
HARTBOGPUD
NYC PVPDAR

BOS D ITH HAR
pet ith

DC 291

HAR T 300 80
ITH A 90
NYC of 280 100
PUD 30

Bos PUDHAR ITHNYC DC
1 2 3 4 5 6

Handout version for reference

HOW TO USE CAMEFROM TO GET SHORTEST PATH

BACKTRACKING LOOKUP IN TOCHECK WITH DEST

GOAL Bos NYC

CAMEFROM BOS 0 MUD HAR 0 NYC

PUD Bos 1
4

HAR BOXPUD SRC
DEST

NYC PAHAR
ITH HAR
DC WITH

For more info, see typed/whiteboard notes from lecture 19

Will "fan out" from the
beginning of the maze
(tracking many routes at
once)

Will go down a path until it
reaches a dead end and then
search from last-seen
branching-off point

Prioritizes based on
distance to the end -- turns
out to be fastest for most
mazes

A note on how these mazes were labeled: the number represents the timestep when that cell was *added* to the
toCheck stack/queue/priority queue. Neighbors are checked in the order right, up, left, down (a different ordering
can result in different numberings/traversals for the mazes). For A*, Manhattan distance is used and ties are
broken by considering the cell that was added to the PQ earlier (has a lower timestep number). Colors change every
20 steps.

Bigger maze comparison
Monday, October 24, 2022 1:02 PM

(Attribution: Pages 4-5 drawn by Milda from Fall 2022 version)

Could we use Dijktra’s algorithm to search the maze? BFS/DFS/A* are search algorithms (goal: find path to destination), whereas Dijkstra
shortest path algorithm (ie, find shortest path to any node from source)—these are different types of algorithms and best-suited for
different use cases! We’ll talk about the runtime for BFS/DFS/Dijkstra in the next class.

BFS/DFS runtime

while (! toCheck.isEmpty()) {

Vertex<T> checkingVertex = toCheck.removeLast(); // removeFirst() for BFS

if (dest.equals(checkingVertex)) {

return true;

}

for (Vertex<T> neighbor : checkingVertex.getOutgoing()) {

if (!visited.contains(neighbor)) {

visited.add(neighbor);

toCheck.addLast(neighbor);

}

}

}

Dijkstra runtime

toCheckQueue = V (prioritized on routeDist)

cameFrom = empty map

for v in V:

v.routeDist = inf

source.routeDist = 0

while toCheckQueue is not empty:

checkingV = toCheckQueue.removeMin()

for neighbor in checkingV’s neighbors:

if checkingV.routeDist + cost(checkingV, neighbor) < neighbor.routeDist:

neighbor.routeDist = checkingV.routeDist + cost(checkingV, neighbor)

cameFrom.add(neighbor -> checkingV)

toCheckQueue.decreaseValue(neighbor)

backtrack from dest to source through cameFrom

Dijkstra Pseudocode

BFS/DFS Pseudocode

