
Dijkstra’s algorithm

Find the cheapest route from Boston to NYC

toCheckPQ

Name Route Distance

Order in which items were removed from
toCheckPQ:

cameFrom












































































































Another application of queue vs stack vs priority queue












































































































BFS/DFS runtime

while (! toCheck.isEmpty()) {

Vertex<T> checkingVertex = toCheck.removeLast(); // removeFirst() for BFS

if (dest.equals(checkingVertex)) {

return true;

}

for (Vertex<T> neighbor : checkingVertex.getOutgoing()) {

if (!visited.contains(neighbor)) {

visited.add(neighbor);

toCheck.addLast(neighbor);

}

}

}

Dijkstra runtime

toCheckQueue = V (prioritized on routeDist)

cameFrom = empty map

for v in V:

v.routeDist = inf

source.routeDist = 0

while toCheckQueue is not empty:

checkingV = toCheckQueue.removeMin()

for neighbor in checkingV’s neighbors:

if checkingV.routeDist + cost(checkingV, neighbor) < neighbor.routeDist:

neighbor.routeDist = checkingV.routeDist + cost(checkingV, neighbor)

cameFrom.add(neighbor -> checkingV)

toCheckQueue.decreaseValue(neighbor)

backtrack from dest to source through cameFrom










































BFS/DFS Pseudocode

Dijkstra Pseudocode




