
CS18 Integrated Introduction to Computer Science Fisler

Lecture 12: Wrap-Around Dynamic Arrays
(ArrayLists)

11:00 AM, Feb 21, 2021

Contents

1 Recap of Where we Are 1

2 The Cost of Resizing Arrays 1

3 Providing addFirst 2

3.1 Implementing WrapAround Arrays . 3

3.2 Revising addLast . 5

3.3 Wraparound in addFirst . 5

Motivating Question

How efficient can we make addLast? Can we make addFirst just as efficient?

Objectives

By the end of this lecture, you will know:

• The concept of amortized analysis

• How to reposition indices within an array

1 Recap of Where we Are

Last class, we realized that we have to be able to resize the underlying array when addLast runs
out of room. We noted that doing this makes addLast be worst-case linear time, so we set out to
improve on that.

Note that these notes are more detailed than what we did in class: they include the detailed
mathematical analysis of the running time of addLast as well as the code modifications needed to
implement wrap-around arrays in support of addFirst.

2 The Cost of Resizing Arrays

So far, you’ve learned about worst-case running time. Here, we certainly pay linear time when we
have to extend the array. But adding a new element is only constant time if the array still has space.

CS18 Lecture 12: Wrap-Around Dynamic Arrays (ArrayLists)11:00 AM, Feb 21, 2021

How do we balance that out when talking about run time?

Instead of thinking about the cost of one operation, we’re going to think about the cost of multiple
operations together. Some of them take linear time, some take constant time. So let’s ask ourselves:
how much time gets taken on average, across the multiple operations? We call this amortized
analysis, because we are distributing the cost of the expensive operations across the cost of the
cheaper ones. That makes sense here, because we allocate extra space when extending the array
specifically to speed up subsequent additions of elements.

If we make the array only one space longer when extending the array, then each addition (after the
initial size) takes linear time. So if we did a sequence of n calls to addLast, each of which took
linear time, that would be a total cost of n ∗O(n). Dividing that by the number of operations is
n ∗O(n)/n = O(n). So this strategy has addLast take linear time amortized.

What if we add two spaces each time we extend the array? Then we would only do a linear-time
operation on every other operation. That would give us an amortized running time of O(n)/2 per
operation. That’s an improvement, but it’s still linear time.

What if we doubled the array size on each extension? Assume we’ve done several extensions and
our array is now size n. What did we pay in copying costs to get here?

n + n/2 + n/4 + n/8 + . . . + 2 + 1

Adding this all up gets to a total cost of 2 ∗ n. In addition, we paid a constant amount of time to
add each item to an empty space. So the total time for adding n elements is 3 ∗ n. If we average
that out across the n operations, we see that we paid amortized constant time to add elements.

Amortized constant time doesn’t erase the worst-case linear time: we will still pay that cost
occasionally. The point here is that we are paying that cost to enable other operations to be cheaper.
And if we distribute those costs, we see that the distributed cost is no worse than if we set aside all
that space up front. From an amortized analysis perspective, the cost of addLast isn’t bad.

The big idea to take from amortized analysis is that it applies to a sequence of calls to a method, not
to a single call. Worst-case time considers single calls to a method. There is also a concept known as
average-case time, which deals with the average run-time on different inputs (but does not consider
them as a sequence). You’ll study average-case analysis if you go on to take CS1570 (Algorithms).

3 Providing addFirst

So far, our ArrayBasedList class is only supporting adding new items to the end of the array.
What if we want to add to the front of the array as well, with an addFirst method. Since arrays
need the items to be consecutive in memory, this suggests that adding to the front of the array
requires moving all of the elements down one space, then putting the new element at the top. This
is again linear time!

Maybe not. What if we left ourselves some blank space at the front of the array to add new first
elements? For example, we might initially make an array of size 8 to hold our TAs, but put the first
TA in at position 2. Then we’d have room to add TAs at either end! Let’s try that with our HTAs.
In the figure below (left), we set an array to size 8 with the start at index 3. We use addLast to
add our four HTAs, then we use addFirst to add Annie to our list of TAs. By putting the start in

2

CS18 Lecture 12: Wrap-Around Dynamic Arrays (ArrayLists)11:00 AM, Feb 21, 2021

the middle of the array, we have room to do that, as shown in the center figure. Note we still have
room on both ends of the array.

Let’s keep going! Let’s add Joe to the end of our array. Now what happens? Notice that the end

marker has run off the end of the array, which means we’ll need to extend the array the next time
we try to addLast (say to add Peter to the array).

Or do we? Notice we still have some extra space in the top two positions of the array? Could we
somehow use those by “wrapping around” the end into the top of the unused space? We sure can!
We just have to adjust the end marker so that it wraps around to the unused spaces:

3

CS18 Lecture 12: Wrap-Around Dynamic Arrays (ArrayLists)11:00 AM, Feb 21, 2021

Let’s focus on understanding this conceptually before we turn to the code. It might help to think of
the top and the bottom of the array “glued together” into a cylinder (or gear) of slots: we’re just
rotating the slots backwards to make room for the new element. It’s as if there were a phantom
index 8 that actually lies in position 0 and a phantom index 9 that actually lies in position 1. In
the above picture, we’ve used red italic numbers on the right of the array to label the conceptual
positions in the list, showing how they differ from the array indices on the left.

With this approach, we can allow addition on both ends of the array, while also making sure we’ve
used all available space before extending the array.

3.1 Implementing WrapAround Arrays

Let’s look at how our code changes to allow this. Let’s start with the get method. Recall that
currently looks like:

String get(int position) {
if ((position >= 0) && (position < maxSize))

return contents[position];
else

throw new RuntimeException("position " + position + "out of bounds");
}

Someone using our code might ask for the first TA in the list (which should be Annie). Since they are
asking for the first TA, they will write ourTAs.get(0) (remember, we count positions from 0). We
know that the actual list actually starts in index 2, however. So in response to ourTAs.get(0), we
should return contents[2]. If the user asks for ourTAs.get(1), we should return contents[3].
And so on.

Generally speaking, our code has to convert from the position the user wants to the array index
where that position actually is. We do that by adjusting the position that the user has asked for to
the correct index by adding the value of start:

contents[position + start]

What should happen if the user calls ourTAs.get(6)? Our current expression would then look up
content[6 + 2]. But there is no index 8 into our array – this would give an “out of bounds” error!

We need a way to compute the correct index while “wrapping around”. A request for position 6
should retrieve the value at index 0 (since start) is 2), as seen in the previous picture (the italic
red 6 is actually at index 0).

If you remember modular arithmetic, that’s all we need here. If you are unfamiliar or rusty with this
concept, it boils down to the remainder under integer division. Consider position + start where
position is 6 and start is 2. Naively, we would ask for contents[8]. The max index within the
array is 7 (one less than the capacity of the array). Let’s divide the naive index by the size of the
array (here, 8/8). The remainder in this division is 0. And that’s the index of the desired element!
If instead we had wanted the element in position 7, we would compute the remainder of (7 + 2)/8,
which is 1 (the index corresponding to position 7).

The remainder under integer division comes up frequently enough in programming (in cases such as
this with arrays) that language build in an operator, called modulo for computing this remainder.

4

CS18 Lecture 12: Wrap-Around Dynamic Arrays (ArrayLists)11:00 AM, Feb 21, 2021

In Java, this is written with a percent sign. Our get method therefore needs to look like:

String get(int position) {
if ((position >= 0) && (position < maxSize))

return contents[(position + start) % maxSize];
else

throw new RuntimeException("position " + position + "out of bounds");
}

Stop and Think: Now that we have modular arithmetic, do we still need the if statement to
check whether the position is within the size of the array?

3.2 Revising addLast

The wrap-around adjustment that we did using modular arithmetic in get has to be done in any
part of the code that deals with indices into the array: if we might move off the edge of the array
(on either side), we have to use modulo to put our indices back within the valid indices of the array.
Both addLast and addFirst do such an adjustment when they adjust the end and start fields,
respectively.

Here’s our updated addLast method:

ArrayBasedList addLast(String newelt) {
if (eltCount == maxSize)

this.resize();
contents[end] = newelt;
end = (end + 1) % maxSize;
eltCount = eltCount + 1;
return this;

}

We have made two changes from the earlier code: we have moved the code to resize the array into
its own method (because we will need that same code in addFirst), and we have used modulo to
adjust the updated end location back within the edges of the array.

3.3 Wraparound in addFirst

The addFirst method would need a similar adjustment on the start field. We might expect to
write

start = (start - 1) % maxSize;

If you write this, you will (probably) be surprised to get array out of bounds errors that report
that start is -1 if it moves off the top edge of the array. This is an artifact of how Java handles
division of a negative number: if start is 0, this code will produce -1, even though that isn’t the
correct answer mathematically. To fix this, we leverage the fact that for any number n, both n and
n + maxSize have the same remainder when divided by maxsize. Thus, we write:

start = (start + maxSize - 1) % maxSize;

5

CS18 Lecture 12: Wrap-Around Dynamic Arrays (ArrayLists)11:00 AM, Feb 21, 2021

At this point, you might expect that addFirst (which we haven’t provided yet) looks basically the
same as addLast, but there’s a subtlety that addFirst has to deal with that addLast does not. It
has to do with how we initialize the start and end fields (both to 0).

If you want a really good exercise, think about how the initial values affect addFirst. Then look at
the posted solution code. Ask yourself which parts of that code are there to support wrap-around,
and which would be there whether or not we implement wrap-around.

Please let us know if you find any mistakes, inconsistencies, or confusing language in this or any
other CS18 document by filling out the anonymous feedback form: https://cs.brown.edu/
courses/cs018/feedback.

6

https://cs.brown.edu/courses/cs018/feedback
https://cs.brown.edu/courses/cs018/feedback

Recap

• When array runs out of space and we want to
addLast, we have to:
– create new (larger) array -- constant
– copy over existing items from old array to new one
• linear time

– then add new element – constant
Can we avoid the linear cost?
What happens on addFirst?

Don’t pay linear cost EVERY time we addLast. Only pay when
array is out of space. Worst-case running time might be
overly pessimistic.

X

X

X

X

constant
constant
constant

constant

linear

linear

What was the cost of adding 6 elements to
an array that was initially size 4?
- 4 constant + 2 linear
What was the AVERAGE cost of those adds?
4 + 5 + 6 = 15 / 6 – not quite linear for all

What if we added more than 1 new slot each time
addLast ran out of room? Let’s add 2 spaces
each time.
Now, to add n elements, we only pay linear
cost (roughly) half of the time, which gives
a running time of n/2 (across all adds)

linear

constant

Amortized run-time is the average cost across multiple
uses of the same method. addLast has linear worst-case
time, but amortized can be better. How much better?

X

X

X

X

constant
constant
constant

constant

linear

linear

- If add 2 slots per resize, amortized is n/2
- if add 10 slots, amortized is n/10
- and so on
in terms of liniear, constant, etc, what time is
n/10? actually, it’s still linear!

- what if DOUBLE the # of slots each resize?

start with k elements
k constants + k + k constants + 2k
- if you sum this up and average over final

array size, this is amortized CONSTANT

linear

constant

null
null

null
null

null
null

null
null

0
1

2
3

4
5

6
7

Carrie
Evan

Nastassia
Put

null
null

null
null

0
1

2
3

4
5

6
7

end

end

Annie

Carrie
Evan

Nastassia
Put

null
null

null
null

0
1

2
3

4
5

6
7

Annie

Carrie
Evan

Nastassia
Put

null
null

null

0

1
2

3
4

5
6

7

empty/initial
array

after several
addLast calls

try to addFirst
(out of bounds)

Emily

null
Carrie

Evan
Nastassia

Put
Joe

Erick

0

1
2

3
4

5
6

7

naive addFirst
shift/copy elts

end

end

end
Can leave empty
space up front,
but messes up get

what if we also
tracked start?

get(i) becomes
array[start + i]

start

now
addLast(“emily”)

are we actually
out of space?

wrapping around
indices to use all

available slots
before resizing

after several
addLast calls

Emily is in conceptual
index 6 (7th element)

Under the hood, she’s in
index 0

get(6) à array[6+2]
array[8] off the end
array has 8 elements
(index + start) mod size
look in array[0] for get(6)Emily

null
null

null
null

null
null

null
null

0
1

2
3

4
5

6
7

Carrie
Evan

Nastassia
Put

null
null

null
null

0
1

2
3

4
5

6
7

end

end

Annie
Carrie

Evan
Nastassia

Put
null

null
null

null

0
1

2
3

4
5

6
7

Annie
Carrie

Evan
Nastassia

Put
null

null
null

0
1

2
3

4
5

6
7

empty/initial
array

after several
addLast calls

try to addFirst
(out of bounds)

null

null
Carrie

Evan
Nastassia

Put
Joe

null

0

1
2

3
4

5
6

7

naive addFirst
shift/copy elts

end

end

end

Can leave empty
space up front,
but messes up get

what if we also
tracked the first-elt
location (as start)?

get(i) becomes
array[start + i]

start

null
Carrie

Evan
Nastassia

Put
Joe

Erick
Emily

null
null

start

end

Emily
null

Carrie
Evan

Nastassia
Put

Joe
Erick

0
1

2
3

4
5

6
7

end
start

Emily

wrap-around to use
empty cells at front

first elt of list can be
stored in middle of array

resize retains order

public class LinkList implements IList {
public int length(int elt) {

int count = 0;
Node current = this.start;
while (current != null) {

count = count + 1;
current = current.next;

}
return count;

}
}

public class LinkList implements IList {
public int length(int elt) {

int count = 0;
for(Integer item : this) {

count – count + 1;
return count;

}
}

public class LinkList implements IList
{

public boolean contains(int elt) {
Node current = this.start;
while (current != null) {

if (current.item == elt) {
return true;

}
current = current.next;

}
return false;

}
}

public class LinkList implements IList {
public boolean contains(int elt) {

for(Integer item : this) {
if (current.item == elt) {

return true;
}

return false;
}

}

We want to be able to write the for-loop versions (below) instead of the while loop ones (above)

• Which parts of the while versions remain in the for-loop versions?
• Which parts get done “automatically” by the for-loop?
• Propose names for each part that seems to be done automatically

Same parts are what programmer will stil write
Different or missing from while version must be
under the hood in Java

	Recap of Where we Are
	The Cost of Resizing Arrays
	Providing addFirst
	Implementing WrapAround Arrays
	Revising addLast
	Wraparound in addFirst

