
 

To test add First do we have to

build the list twice to write

assertion

assertEquals expected
computed

assertEquals
LI add First 5

LexP

LExp new Emptylist
C add First GT

use your other
methods to check

new methods
Size after add First

contains after add Fist



Let's make mutable lists instead

Review immutable diagram

environment heat
L int

FIFI
L

L in FELT

This diagram refers to the code

L im I new Empty list C add First 3
add First 5
add First 7

L im 2 L iml add Fist 4

if we were to print out the contents
of

These Lists L im I would show 7.5.33

but not 4 L i m2 would show 4,75,3



What should happen in a mutable list

if L im I were mutable then after

calling add First L
im I would

also print as 4 7 5 3

The question is how to make that

happen Let's start by looking at

the level of the diagrams

Here's a code sample and the

diagram we might want to
match

the code

mut I new MutEmpty lists
add First 3

add First s

add First
7

printing mut l shows 7,513

mut l add
First 4

printing mut shows 4,715,3



end hey

j

t

Bre
The Java code we wrote in

blue above does not produce

this picture the only code

that can produce this picture

is

only way to change
relationship

between Lmuti objects in
Java or other langs



let's summarize

We want to write the blue code

easier for programmers
than

the green
code

By the rules
of Java we have

to write the green
code

given
our existing link

class
No Java code can build the

picture that
we drew due to

how the language works

Instead we need a picture
in which no arrows from

the names env have to change

but the list contents
in the

heap can still change
Here's a picture that does this



Lma DEE
starty

TETEFI
FEB

mutt addFirst 4

We introduce a new class

called mutable list that

serves as a consistent
access point to the

rest of the

list add First changes whet

objects the Mutable list refers
to that's the mutable part
but the mapping from

mute to the mutable list

object stays fixed


