

REPRESENT

2 STATES 7 ASBITS O I D I BIT

Y POSSIBLEBITSTRINGS
Y STATES 700 01 10 11 D 2 BITS

8 POSSIBLE BITSTRINGS
8 11

ooo co 010 011

100 101 110 111

3 BITS

Idea: give each state a name

 - Smallest piece of information in a computer is a bit (0 or 1)

 - Assign name to each state “bit string” (sequence of bits)’

	 	 For n states, how many bits? Log2(N)

N bits => 2^N possible “things” (in this case states)

	 OR

M states => log2(M) bits

log2(9) = 3.1 => 4 (need all strings to be same length)

Continuing from last class: goal was to succinctly represent set of “safe” program states

Our goal: represent set of safe
states

Could write as:

List[0100, 0101, 0110, 0111]

This is much smaller than objects,
but still grows linearly!

618 I
b be b by

Reachable: (b1 == 0) AND (b2 == 1)

Could also write as: (not b1) and (b2)

==> To check if the state is safe, Don’t
even need to store a list of reachable
states! Just need to check if the
bitstring matches the formula!

BDD: How it works (high level)

 - Run BFS to find reachable states

 - Mark each leaf of BDD as reachable
for each state

 - Can make a logical formula (a
boolean expression) to represent
reachable states

=> Using this idea, we can represent each state as a bitstring of
0’s and 1’s

> Notation: we write state of individual bit as b0, b1, …, where
b0 could be 0 or 1 (like a Boolean variable)

What can we do with this?

 - Represent states VERY succinctly (lower space complexity)

 - Can represent set of reachable states as a decision tree => Binary Decision Diagram (BDD)

00 0 O
B B2B By

Formula would be a lot more complicated!

((not b1) and (not b2) and (not b3) and (not b4)) OR

((b1) and (not b2) and (b3) and (not b4) OR

…

Takeaways:

 - Coming up with a good naming of states
is nontrivial

 => Problems are provably
computationally hard, people work on this
for specific settings

 - Depending on what the BDD looks like,
logical formula may get complex

Want to learn more?

Consider taking: Logic for Systems

 => Learn about algorithms people have
made to represent these in more concise
ways, make tools to help, software to use

Try it: what would the BDD look like if we picked these names instead?

O 1

NATS I
8 Bits CHAR Hsin I 0 I

32 BITS CHAR UNICODE O d 1 O o

o o o O o n

o i 0 I 0 1

Hats
hi 10104
a oio 3,1 7 95,5t 0110
Si loll y

24 SMALLER

n 91 9s't

“this is an example of a huffman tree”Compression: how to store text efficiently?

Takeaways:

 => Leveraging patterns in data for efficiency

 => Encoding pattern in BDD structure (use to convert)

To decompress the data, we’d start with the string of

all these bits, then follow the tree to find each letter:

ASCII: Use 8 bit bitstring for each character

	 => 4 * 8 bits = 32 bits total

Storage: increases linearly with number of characters

BigWiki (from HW6):

 141 million characters * 8 bits ~= 136MB

Idea: language (and most data) isn’t random

Compression: use fewer bits to represent data that
appears more frequently

	 “e” appears more often than “x”—so maybe we
can use fewer bits?

Huffman coding:

 - for some input data, find unique bitstring to
represent characters, use fewer bits for more
common letters

