Heap: A binary tree in which the highest-priority item is at the root and both the left and right subtrees are also
heaps
Key operations:
- get max: constant time (just look at max)
- insert: Add a new item => O(logN) for N items,
if the tree is balanced
- remove max: O(logN) if tree is balanced

Exercise: Which of the following are heaps? Which are balanced (whether or not they are heaps)?
g ’
A Cc D v
7 g 10
AT // / N
7 e N [s 10 7
2 /L J \) 2 2/
1
- \h@\sz A
¥ 5

1 oNL)] BapacED 1
"3 EINPLE .

Define “balance”:
at any node, height of left and right subtrees

differ by at most 1
Or: “How I filled up every row of the tree other
than the bottom-most one?”

Goal: implement heaps with the run-times stated above.

Requirements:
- Result must be a heap
Try it: insert 8 into each of the following trees, while maintaining requirements - Can only modify one

branch of the tree

A B

C
. 0 5?
J\ 14 oy’

L O

insert: / \

1. Find blank spot to insert new 7 I{
element without breaking balance / \ /
2. Swap element up until result is heap # 3 \
(8 I

arguments to a function specified by name. If you leave
them out, default value is used (here, None)
=> Can have functions with optional arguments!

A

1/4 Aside on Python syntax: these are “keyword arguments” =>
Bl (va9) (e e

Implementation: here’s a binary-tree class in Python

g y ‘V' v Tz_b,ﬁ

class BinTree:

def init (self, QEEE, left=None, right=None): \
self.left = left
self.right = right 55
self.data = data \
a unbalanced_tree = BinTree("a", ///
#/\ .
D#/ b right=BinTree("b", \V
. —mbkbigion
#/f \ right=BinTree("c",
i ¢ left=BinTree("d"),
/ \ insert: W)))
d 1. Find blank spot to insert new element without
fii breaking balance

=> Need way to know which spots are empty, would
need to store some extra info

1. Swap element up until result is heap
=> Need to find node “above” you => requires a
doubly-linked tree (field for parent) (HW2)

Usually, use a different kind of representation that:
- Is easy to find an open slot 1//e
- Is easy to navigate up and down tree

To simplify: enforce that all inserts use the next
available slot in the last row of the tree (don’t have to

choose)
)0
/S
7 S Sccold
/N IXT

! y THED
AN F1rlr

How to create an easier implementation?

To simplify: enforce that all inserts use the next
available slot in the last row of the tree (don’t have to

choose)
)0
/\

/ \ /% Srcod

K 7420

N pincr
SOt uvpronm: Lypep TREE wigpe A0 _ARPAY

Easy to find next open spot: Jjust look for first
element that’s empty
ORANEE = ArKAY JNOICES

0@;/ For some node at index 1i:
) - left(i) is at (i * 2) + 1

/ \S@ - right(i) is at (i * 2) + 2

- parent(i) is at

7 floor((i - 1)/2)
\ :
@// &6\ 6 £ 7+@ oo -
EFr =
ro, LFT = 245, :@

LT = v
7 [/1[-

We’ll pick up from here next lecture. . .

