
Multiple ways to do dynamic programming

Initial ChatGPT version

def max_sweets_chatgpt(n, rating):

dp = [0] * n # Make list with N 0's in it

dp[0] = rating[0]

dp[1] = max(rating[0], rating[1])

for i in range(2, n): # iterates over 2 ... N

dp[i] = max(dp[i - 1], dp[i - 2] + rating[i])

return dp[n - 1]

Version we last class
def max_sweets_class(ratings):

if len(ratings) == 1:

return ratings[0]

best = [0] * len(ratings) # Makes an array with all zeroes in it

best[-1] = ratings[-1] # Base case (last item)

best[-2] = max(ratings[-1], ratings[-2]) # Base case (second to last)

Fill in remaining spots, working right to left

Start at second from last, stop at index 0, going backwards

for i in range(len(ratings) - 3, -1, -1): #

best[i] = max(ratings[i] + best[i + 2],

best[i + 1])

return best[0]

How to run each one

sweets = [3, 10, 12, 16, 4]

print(max_sweets_chatgpt(len(sweets), sweets)) # 26

print(max_sweets_class(sweets)) # 26

WITHIN

This version builds the result by iterating over the data from
the start to end:

 - The base cases are the first two elements of the array

 - The result is in the last element of the array

 => This is called a “top-down” approach

This version builds the result by iterating over the
data from the end of the array back to the
beginning:

 - Base cases are the last two items

 - Iterate over the array starting from end, going
backwards

 - Result is in the first element of the array

=> This is called a “bottom-up” approach

These are just different ways of formulating the solution to the problem. It’s always possible
to write both, though one form may seem more intuitive for different situations

New Problem: Gathering Goodies in 2 dimensions

Imagine that you live in a neighborhood that is laid out in a grid. It’s Halloween, and you get to stop at one
house on each east-west street (in each row) to collect candy. The idea is that you will start from some
house in the top row, then make your way down to the bottom row. From each house you visit, the next one
has to be either directly below or diagonally adjacent. Your goal is to maximize the number of pieces of
candy that you collect in total. Write a program to find the best path through the neighborhood.

Work either by hand in below table or in spreadsheet

Debugging the ChatGPT solution to the Halloween candy problem

def max_candy_collection(grid):

m = len(grid) # number of rows

n = len(grid[0]) # number of columns

Initialize the memo table with the same values as the bottom row of the grid

memo = [list(row) for row in grid[-1:]]

Fill in the memo table by working our way up from the second-to-last row

for i in range(m-2, -1, -1):

for j in range(n):

Calculate the maximum number of candy pieces that can be collected

from the next house by taking the maximum of the three possible

moves from the next row's corresponding houses, plus the value of

the current house.

candy = grid[i][j] + max(

memo[-1][j],

memo[-1][max(j-1, 0)],

memo[-1][min(j+1, n-1)]

)

Store the maximum number of candy pieces in the table for this house

memo.insert(0, [candy])

Find the max collection by checking the values in the top row of the table

max_candy = max(memo[0])

return max_candy

INPUTDATA

M s Tt
START FROMTHUSROW

memo[i][j] = grid[i][j] + max(the
three cells below this one)

38 37 55 37
psts FORMAT

1 34 27 32 f
USING WRONO

2 15 18 19 25 A
3 11 13 4 8 11 13 4 8

MENS

g
i I 1 0 A

mn fi iiiiiiMar 1 I
j o pl 2 3

94MAY 11 11 13 94 13 22

MemoG I 0 11

i iitiit.it
RIGHTNOW

memo (expected) memo (ChatGPT version, so far)

Before, we make the whole data structure at
the beginning

This programs builds it as we go

memo[i][j] = grid[i][j] + max(the
three cells below this one)

How did chatGPT get 22?!?!?

The rest of these notes are mainly scratch work from live code debugging done in class. See the worked out example
for a text-based version of how this works. For more on these notes, see the recording.

ChatGPT, and friends are based on large language models (LLMs)

Take in large quantities of human knowledge, speech, etc, built up repository for what is
likely to come after something else

I am a student at Brown ____________

 => predicts what comes next

We don’t know (and it’s really hard to predict) what inputs it’s drawing from. It’s not
smart. It just has a lot of data about the words and terms, so this seems likely to come
next.

Whose text did it take? Where did it come from? Some of your code, my code? Is it
correct?

A generalized debugging strategy

Figure out (on paper, in REPL, etc) what you expect program to be doing
1.
Try to figure out how program deviates from that behavior
2.
If this doesn’t show you where the problem is, try to look deeper at what 3.
happens in (1) and (2), repeat

