

3 10 12 16 4
Problem: write a program to select the
maximum total rating of candies you can buy,
with constraint that you can’t select adjacent
candies

Initial idea: to solve, break problem down into smaller problems,
solve smaller problems

=> Recursive version, works, but has lots of repeated computations

 => involves solving the subproblem multiple times

=> Dynamic programming

The basic idea:

 - Store the result of each subproblem as you go (list, map, etc.)

 - When you compute each subproblem, use the results from

previous subproblems to find result

=> Certain types of programs can take advantage of this style of
programming

INDE
eg s to viz pp k Yy

6 26 16 16 4
Sip SIP PA P R

Best y p

Best my 16 4 PI P 16
Don't R e

Best Max 12 4 16 16 Pick VtR
May 12 4 MAX 16,477 DON'TP

Best mat 10 16,16 Pick S Pfnationalism m ll Don't44J
BEST MAX 3 16,26
t.MX 3t

Pick Ct J
Don't I

ratings

best

choices

How it works

 - Loop through array right to left

 - At each step i, keep track of
max rating seen so far

make an array (best) which
stores the maximum rating seen
so far (ie, from i to end of array)

 - At end, result is in best[0]

best[3] = max(ratings[3], best[4]) (could also write this)

First step is base case => max rating if array was size 1 (only raspberry)

Consider array of size 2: [P, R], need to choose max

best[3] = max(ratings[3], ratings[4])

best[i] = max(ratings[i] + best[i + 2], best[i + 1])

best[2] = max(ratings[2] + best[4], best[3])

Consider array size 3: [V, R, P]

best[1] = max(ratings[1] + best[3], best[2])

best[4] = ratings[4]

best[0] = max(ratings[0] + best[2], best[1])

Problem-specific part:

for any candy you consider:

 - Pick that candy

 - Don’t pick it

=> This affects what you pick
after that

To find the max rating, we use
best to look up results we’ve
previously computed!

 - Pick: consider current rating
+ max rating two steps ahead
(can’t pick adjacent)

 - Don’t pick: consider max if
we ignored this slot (rest of
array)

Consider array size 4: [S, V, R, P]

After working this out on paper, we can write a general-case solution by inspection (see page 5 for code):

General strategy for thinking about these types of problems

 - Start with the base case (simplest solution you already
know)

 - Starting from base case, write out expected result and
write it down (what goes in ‘best’ array)

 - Continue for more steps, using past info you wrote down

 - Try and write a general solution for how to find any result
based on your stored info

When do we use dynamic programming?

 - Use when you can break original problem down into subproblems
such that the subproblem is the same no matter when you compute
it

The function must be a “function” in the mathematical sense,
meaning it doesn’t modify any variables that compute the
subproblem

Topic: Adding Path Tracking

ChatGPT solution (last class)

def maximize_total_rating(sweets):

n = len(sweets)

if n == 0:

return 0

elif n == 1:

return sweets[0]

Initialize a list to store the maximum total ratings for each position

max_ratings = [0] * n

max_ratings[0] = sweets[0]

max_ratings[1] = max(sweets[0], sweets[1])

for i in range(2, n):

Calculate the maximum total rating for the current position

max_ratings[i] = max(max_ratings[i - 1], max_ratings[i - 2] + sweets[i])

return max(max_ratings[-1], max_ratings[-2])

Example usage

sweets = [3, 10, 12, 16, 4]

result = maximize_total_rating(sweets)

(This example is from ChatGPT. See next page for a version of the
code that matches the example on page 2, which we did in class.)

print("Maximum total rating:", result)

A right-to-left solution

def max_sweets_dp_rtl(ratings):

if len(ratings) == 1:

return ratings[0]

best = [0] * len(ratings)

best[-1] = ratings[-1] # Base case (last item)

best[-2] = max(ratings[-1], ratings[-2]) # Base case (second to last)

Fill in remaining spots, working right to left

for i in range(len(ratings) - 3, -1, -1):

best[i] = max(ratings[i] + best[i + 2],

best[i + 1])

return best[0]

