CHNoC STEAWBERY | TAMILLA | Fisrpucdl 0 | BASPBeeRy
E lo 1z ' 4

Problem: write a program to select the
maximum total rating of candies you can buy,
with constraint that you can’t select adjacent
candies

Initial idea: to solve, break problem down into smaller problems,

solve smaller problems

=> Recursive version, works, but has lots of repeated computations
=> involves solving the subproblem multiple times

Pick Chocolate?
no yes

Pick Strawberry? Pick Vanilla?

Pick Vanilla? Pick Pistachio? Pick Pistachio? Raspberry!
no
/ ! yes "V \{es no\ \{‘
Pick Pistachio? Raspberry! Raspberry! Pistachio! Raspbiersyl Pistachio!
A \yes
Raspberry! Pistachio!

=> Dynamic programming

The basic idea:

- Store the result of each subproblem as you go (list, map, etc.)
- When you compute each subproblem, use the results from
previous subproblems to find result

=> Certain types of programs can take advantage of this style of
programming

How it works

- Loop through array right to left

-At-each step i, keep track of
max rating seen so far

make an array (best) which
stores the maximum rating seen
so far (ie, from i to end of array)

- At end, result is in best[0]

Problem-specific part:

for any candy you consider:

- Pick that candy

- Don’t pick it

=> This affects what you pick
after that

To find the max rating, we use
best to look up results we’ve
previously computed!

- Pick: consider current rating
+

(can’t pick adjacent)

?on pick: consider max if
ignored this slot (rest of

array)

G)BesT=pai(104 14, /é)
= P /O\fMMY M (1244, MAWIA,Y))) Dow by (V48)

best[1l] = max(ratingsi[l] + besit[S] i bes‘t[Z])

-

@stﬁ MAL(3+ 16, 26)
:./.1’“)((%1‘ f,L 7 J;

12

] 0

lb
0

©

best [é _Z.é]/é /% l/
57 15,7 Px P £

First step-is base case =>max rating-if array was size 1 (only raspberry)

pesr =

best[4] = ratings[4]
@ Consider array of size 2: [P, R], need to choose max
Besm= (1, 1)

best[3] =
best[3] =

@

choices

Plee; B (1)
Dony . — (0)

Pick: P (14)
max(zjatlnés[3]‘, ratings[4]) 0/"’1’
best[4]) (could also write this)

max (ratings[3],

Consider array size 3: [V)|R, P]
BEST < rax (1249, l6)= 16
=My (21, MMJ) po'r P

best[2] = max(ratings[2] + best[4], best[3])

Vick: Sy 7

ol

best[0] = max(rati#xgs[Q] + best[2], }Estﬂl])

best[i] =

After working this out on paper, we can write a general-case solution by inspection (see page 5 for code):

max (ratings[i] + best[i + 2], best[i +

11)

General strategy for thinking about these types of problems
- Start with the base case (simplest solution you already
know)
- Starting from base case, write out expected result and
write it down (what goes in ‘best’ array)

- Continue for more steps, using past info you wrote down

- Try and write a general solution for how to find any result
based on your stored info

When do we use dynamic programming?

- Use when you |can break original problem down into subproblems
such that the subproblem is the same no matter when you compute
it

The function must be a “function” in the mathematical sense,
meaning it doesn’t modify any variables that compute the
subproblem

Topic: Adding Path Tracking
Flavor: Chocolate Strawberry Vanilla Pistachio Raspberry

Rating: 3 10 12 16 4

Optimalanswer: max(3

max(16, 4)

=26 16
_ (This example is from ChatGPT. See next page for a version of the
ChatGPT solution (last class) code that matches the example on page 2, which we did in class.)

def maximize_total_rating(sweets):
n = len(sweets)
if n ==
return ©
elif n == 1:

return sweets|[0]

Initialize a list to store the maximum total ratings for each position

max_ratings = [B] * n

max_ratings[0] sweets[0]

max(sweets[0], sweets[1])

max_ratings[1]
for i in range(2, n):
Calculate the maximum total rating for the current position
max_ratings[i] = max(max_ratings[i - 1], max_ratings[i - 2] + sweets[i])

return max(max_ratings[-1], max_ratings[-2])

Example usage

[3, 10, 12, 16, 4]

sweets

result = maximize_total_rating(sweets)

A right-to-left solution
def max_sweets_dp_rtl(ratings):
if len(ratings) ==

return ratings[9]

best = [0] * len(ratings)

best[-1]
best[-2]

ratings[-1] # Base case (last item)

max(ratings[-1], ratings[-2]) # Base case (second to last)

Fill in remaining spots, working right to left
for i in range(len(ratings) - 3, -1, -1):
best[i] = max(ratings[i] + best[i + 2],

best[i + 1])

return best[0]

