Problem statement: (last lecture) Write a program to compute the maximal total rating (a number) of

flavors that you can buy, under the

/&,/’/é\)[;

traint that you cannot select adjacent flavors.

==

v

Prex Corppl
Flavor Chocolate Strawberry Vanilla Pistachio Raspberry
{ Rating 3 10 12 16 4
Optimal
answer
AN

def pick_sweets(ratings, from pgs -> int:
+ if from pos == len(ratings) - 1: LAST J7em Ceuse CASE)
return ratings[from pos] :T
-else if from post == len(ratings) - 2: Secown 4 LAST”

ratings[from pos + 11])

return max (ratings[from pos],
~ glse return max (pick_sweets(ratings, from pos + 1) ,—2 SKIP TC one 1 Ty WEST
- .
* ratings[from pos] + pick sweets (ratings, from pos + 2))

7 ﬁ—f 78 WE,

X7 75
I /4 NERD. conS/DEN. /€

Pick Chocolate?

@ Na

Strawberry? Pick Va

44/\ /\‘

Pick Vanilla? Pick Pistachio? Pick Pistachio? Raspberry!

e N AR

Pick Pistachio? Raspberry! Raspberry! Pistachio! Raspberry! Pistachio!

A \yes ww‘ /.{' Cepr. Dk Zéé oel)pe

Raspberry! Pistachio! C/QAL {"7

pick sweets(ratings list, 0)
_ _ —

Try it: what is the order of the recursive calls?

Label the following decision tree with the order in which each recursive call happens while running the

pseudocode
@hocolate?

Pick Strawberry? Pick Vanill
no
es 0 yes
/\y @ W\‘@
ick Vanilla? Pick Pistachio? Pick Pistachio? Raspberry!

no
D o oy e,
o 2o \w
Pick Pistachio? Raspberry! Raspberry! Pistachtd! Rasphexy! Pistachio!
5 B
@ no yes @
a

spberry! Pistachio!
For N flavors, we end up with 2*N nodes in the tree. The recursive
version visits all of them => O(2”N) runtime

Pseudocode:
pick sweets(ratings, from pos) -> int:
if from pos == len(ratings) - 1:

return ratings[from pos]
else if from pos == len(ratings) - 2:

return max (ratings[from pos], ratings[from pos - 1])
else return max(pick sweets(ratings, from pos + 1),

pick sweets(ratings, from pos + 2) + ratings[from pos])

pick sweets(ratings list, 0)

Pick Chocolate?

Pick Strawberry?

Pick Vanilla?

Pick Vanilla Pick Pistachio? / Pick Pistachio? Raspberry!
j yes "V \{es nc\ \{‘
Raspberry! Raspberry! Pistachio\ g oberry! Pistachlo!

=> Same computation, same answer
When we look to make code faster, one thing we look for is repeated computations
To speed up, two choices:
1. Remember results we’ve already computed and reuse them
2. Rewrite code so that each computation is only done once
=> We focus on option 2

How do we break down option 27
pick sweets(ratings, from pos) -> int:

if from pos == len(ratings) - 1:
return ratings|[from pos]
else if from pos == len(ratings) - 2:
return max (ratings|[from pos], ratings[from pos - 1])
else return max (pick sweets(ratings,from pos + 1),
pick sweets(ratings, from pos + 2) +

ratings[from pos])

pick sweets(ratings list, 0)

gup — LooP — ST
< ' BAsE cpse BAse cxe
Flavor Chocolate Strawberry Vanilla Pistachio Raspberry
Rating 16 4

Optimal | max(3+ max(10 + max(12 + max (16, jkl_\
answer Q
= 16 4
-1 A —_

7Y

=2 Comprins EAN CELL Depewde U
FReion fESATS

Goal: compute everything exactly once

If we read from the right edge back—we know raspberry, it doesn’t
depend on anything

Pistachio: rating for raspberry, which I already know

Vanilla: I need pistachio, which I already know, and raspberry

=> Could start at the base cases, save the values, work our way
backwards

Note: it’s okay if this still seems weird right now—we’ll build an example in the next
lecture (also see typed notes for more details)

Dynamic programming: building a strategy

- Set up an array of results,
Array has same length as number of flavors

- Fill in last cell of array with rating (rasp)

- Fill in next to last cell with max of last 2 cells

- Loop backwards through array to £ill in each result based
on the next two cells in the array

This seems annoying to write. . . Let’s ask ChatGPT

