
Problem statement: (last lecture) Write a program to compute the maximal total rating (a number) of
flavors that you can buy, under the constraint that you cannot select adjacent flavors.

Flavor Chocolate Strawberry Vanilla Pistachio Raspberry

Rating 3 10 12 16 4

Optimal
answer

def pick_sweets(ratings, from_pos) -> int:

if from_pos == len(ratings) - 1:

return ratings[from_pos]

else if from_post == len(ratings) - 2:

return max(ratings[from_pos], ratings[from_pos + 1])

else return max(pick_sweets(ratings, from_pos + 1),

ratings[from_pos] + pick_sweets(ratings, from_pos + 2))

pick_sweets(ratings_list, 0)

P pick Consider

ARRAY

I LASTITEM BASECASE

SECONDTOLAST

SKIPTHISONE TRYNEXT

as ENEXTto consider is

4

WHAT IS ORDER OF RHURSIVE
Les

Try it: what is the order of the recursive calls?

Label the following decision tree with the order in which each recursive call happens while running the
pseudocode

Pseudocode:
pick_sweets(ratings, from_pos) -> int:

if from_pos == len(ratings) - 1:

return ratings[from_pos]

else if from_pos == len(ratings) - 2:

return max(ratings[from_pos], ratings[from_pos - 1])

else return max(pick_sweets(ratings,from_pos + 1),

pick_sweets(ratings, from_pos + 2) + ratings[from_pos])

pick_sweets(ratings_list, 0)

0

=> Same computation, same answer
When we look to make code faster, one thing we look for is repeated computations
To speed up, two choices:
 1. Remember results we’ve already computed and reuse them
 2. Rewrite code so that each computation is only done once
 => We focus on option 2

For N flavors, we end up with 2^N nodes in the tree. The recursive
version visits all of them => O(2^N) runtime

pick_sweets(ratings, from_pos) -> int:

if from_pos == len(ratings) - 1:

return ratings[from_pos]

else if from_pos == len(ratings) - 2:

return max(ratings[from_pos], ratings[from_pos - 1])

else return max(pick_sweets(ratings,from_pos + 1),

pick_sweets(ratings, from_pos + 2) +

ratings[from_pos])

pick_sweets(ratings_list, 0)

Flavor Chocolate Strawberry Vanilla Pistachio Raspberry

Rating 3 10 12 16 4

Optimal
answer

max(3+ __, __)

= 26

max(10 + __, __)

= 26

max(12 + __, __)

= 16

max(16, __)

= 16 4

END LOOP START BASECASE BASECASE

a a Pa

Who

COMPUTING EACH CELL DEPENDS ON
PREVIOUS RESULTS

How do we break down option 2?

Goal: compute everything exactly once
If we read from the right edge back—we know raspberry, it doesn’t
depend on anything
Pistachio: rating for raspberry, which I already know
Vanilla: I need pistachio, which I already know, and raspberry

=> Could start at the base cases, save the values, work our way
backwards

Note: it’s okay if this still seems weird right now—we’ll build an example in the next
lecture (also see typed notes for more details)

Dynamic programming: building a strategy
 - Set up an array of results,
 - Array has same length as number of flavors
 - Fill in last cell of array with rating (rasp)
 - Fill in next to last cell with max of last 2 cells
 - Loop backwards through array to fill in each result based
on the next two cells in the array

This seems annoying to write. . . Let’s ask ChatGPT

