Problem statement: (last lecture) Write a program to compute the maximal total rating (a number) of

flavors that you can buy, under the
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traint that you cannot select adjacent flavors.
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Try it: what is the order of the recursive calls?



Label the following decision tree with the order in which each recursive call happens while running the

pseudocode
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For N flavors, we end up with 2*N nodes in the tree. The recursive
version visits all of them => O(2”N) runtime

Pseudocode:
pick sweets(ratings, from pos) -> int:
if from pos == len(ratings) - 1:

return ratings[from pos]
else if from pos == len(ratings) - 2:

return max (ratings[from pos], ratings[from pos - 1])
else return max(pick sweets(ratings, from pos + 1),

pick sweets(ratings, from pos + 2) + ratings[from pos])

pick sweets(ratings list, 0)
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=> Same computation, same answer
When we look to make code faster, one thing we look for is repeated computations
To speed up, two choices:
1. Remember results we’ve already computed and reuse them
2. Rewrite code so that each computation is only done once
=> We focus on option 2



How do we break down option 27
pick sweets(ratings, from pos) -> int:

if from pos == len(ratings) - 1:
return ratings|[from pos]
else if from pos == len(ratings) - 2:
return max (ratings|[from pos], ratings[from pos - 1])
else return max (pick sweets(ratings,from pos + 1),
pick sweets(ratings, from pos + 2) +

ratings[from pos])

pick sweets(ratings list, 0)
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Goal: compute everything exactly once

If we read from the right edge back—we know raspberry, it doesn’t
depend on anything

Pistachio: rating for raspberry, which I already know

Vanilla: I need pistachio, which I already know, and raspberry

=> Could start at the base cases, save the values, work our way
backwards

Note: it’s okay if this still seems weird right now—we’ll build an example in the next
lecture (also see typed notes for more details)



Dynamic programming: building a strategy

- Set up an array of results,
Array has same length as number of flavors

- Fill in last cell of array with rating (rasp)

- Fill in next to last cell with max of last 2 cells

- Loop backwards through array to £ill in each result based
on the next two cells in the array

This seems annoying to write. . . Let’s ask ChatGPT



