

RATING

pff BUYCHOC SKIPSTRAWCONSIGNY

we
SKIP CHOC CONSIDERSTRAW OR

VANILLA

HOW TO FIND SET W MAX RATING

OPTIONS

CHOCTVANILLA RASP 31 12 13 18
STRAW PIST 10 16 26
CHOC TPIST 3 16 19

Goal: buy set of candies with the max total rating, but with a constraint:

 - you can’t get two candies that are adjacent to each other

I
1 2 3 4

e __

t

How would we do this generally? Can recursively build up a
solution starting from the end

max_sweets(sweets_rating, from_pos):

	 if from_pos is end of list

	 	 return rating(last) # Rating of last item in list

 else if from_pos is one before the end

 return max(rating(last), rating(last - 1))

 else

 return max((rating(from_pos) + max_sweets(from_pos + 2)),

 max_sweets(from_pos + 1)

 // Compute both, keep the larger one

=> Can look at this like sort of a tree structure, where each edge is
a call to the recursive function over a certain subset of the data

0
fr TRY Straw

o
Wanna

7 4 Fast 0
Vanus TRYPIS
TRYRASP

Here’s what the full tree could look like for this example:

Try it: take a look at the edges. What do you notice?

y

CHOC

STRAW VANILLA

VANILLA PIST
PIST RASP

PIST RASP

We have some repeats! Multiple instances of the same tree structure => calling
the recursive function multiple times with the same arguments!

 => We are doing the same computation multiple times, which is inefficient

	 	 => on a big list, this could get expensive!

For this problem, the runtime actually turns out to be exponential ie, O(2^n), which
is much worse than other algorithms we’ve seen so far. For more details on this,
see the typed notes.

