

A C

A B

HIDL C
VISITED ABD C

TO CHECK

B

DFS example

DFS RUNTIME

PIKI
WHY NOT

iiiOLI

WHAT WOULD THE
WORST CASE BE

=> Even though both graphs have the same number of
vertices, we’re certainly doing more work in this one because
it has more edges

At worst, runs |v| times through this
while loop.

Look at neighbors

In the worst case, how many
neighbors might a node have?

O(|V|)???

=> If we follow our original rules, we’d get (O|V|^2)

but it’s actually a bit different than that, because we change the
set of nodes we’re iterating over

Let’s look a bit deeper—what are we measuring runtime on, exactly?

|V| (the size of the set of vertices)

|E| (the size of the set of edges)

BOTH IV AND E AFFECTRUNTIME

There are dense graphs and sparse graphs. Some algorithms work well on sparse graphs, and some work
well on densely connected graphs.

i

B VERTICEABIÉEES ATB
D

B D
co B

FINAL RUNTIME

OLIVIT EI

If we consider these operations across all
iterations of the while loop, they’ll contribute

O(|V|) to the runtime

Q: What runtime will these lines (highlighted in blue)
contribute across all iterations of the loop?
 => O(|E|)
Why? Each time we visit a vertex (while loop), we check the edges corresponding to
that vertex’s neighbors only. Across all iterations of the loop, this means that we check
each edge exactly once. For an example, take a look at the shading in this graph
where we’ve written out the set of vertices and edges and try to match it to the code.

Therefore, final runtime is the combination of these contributions.

Why isn’t it O(|V| * |E|)? Even though the for loop is nested inside the
while loop, it runs on a different subset of E each time (ie, the neighbors
of checkingVertex). In total, we end up checking each edge exactly once,
so the total runtime is time to loop over each vertex (|V|) plus the time to
loop over each edge (|E|).

Take a look at the graph on this page and the typed notes for more
details.

1 Jan

7 060

011

04 011

0401

O Heard IE log
O Mt El log VI

Runtime for Dijkstra

As before, this loop runs |V| times

Remove from ideal priority queue: O(log(|v|)

decreaseValue has O(log(|V|)

(with optimized priority queue implementation—see
notes for details)

0000
END

O 0 0

In O_0 O O

d d old
BFS, DFS are search algorithms: “can I find a path from source to
dest”

Dijkstra is a “shortest path algorithm”: how to find cheapest-cost
path from source to dest

or

DFS BFS
QUEUE

AA
STACK PRIORITY QUEUE

Follow one path until you hit a
dead end

Will "fan out" from the
beginning of the maze
(tracking many routes at
once)

Will go down a path until it
reaches a dead end and then
search from last-seen
branching-off point

Prioritizes based on
distance to the end -- turns
out to be fastest for most
mazes

A note on how these mazes were labeled: the number represents the timestep when that cell was *added* to the
toCheck stack/queue/priority queue. Neighbors are checked in the order right, up, left, down (a different ordering
can result in different numberings/traversals for the mazes). For A*, Manhattan distance is used and ties are
broken by considering the cell that was added to the PQ earlier (has a lower timestep number). Colors change every
20 steps.

Bigger maze comparison
Monday, October 24, 2022 1:02 PM

(Attribution: Pages 4-5 drawn by Milda from Fall 2022 version)

Could we use Dijktra’s algorithm to search the maze? BFS/DFS/A* are search algorithms (goal: find path to destination), whereas Dijkstra
shortest path algorithm (ie, find shortest path to any node from source)—these are different types of algorithms and best-suited for
different use cases! We’ll talk about the runtime for BFS/DFS/Dijkstra in the next class.

