DFS example 74 v—> (while (! toCheck.isEmpty()) {

Vertex<T> checkingVertex = toCheck.removelast(); // removeFirst() for BFS
if (dest.equals (checkingVertex)) {
return true;

}

74 > E for (Vertex<T> neighbor : checkingVertex.getOutgoing()) {
if (!visited.contains (neighbor)) {
visited.add (neighbor) ;
toCheck.addLast (neighbor) ;
}
y>, C |

ViIsiTED: A B n C

TO CHECK!

K

)i

¥/
@

—p/t'g ﬁU " / 7/" E At worst, runs |v| times through this

while loop. 7 13 &/
while (! toCheck.isEmpty()) { U’“‘)’ Mot/ oM O\}\‘)
—_— e
'Q\L"\ Vertex<T> checkingVertex = toCheck.removelast(); // removeFirst() for BFS F
. . ’,-—/_\J\
if (dest.equals (checkingVertex)) { (9_

DLI) return true; C{iﬂb

}
Look at neighbors

(" <T> nei : ' : i
LoaP . for (\Etex T> neighbor checkingVertex.getOutgoing()) { In the worst case, how many
¢ if (!visited.contains (neighbor)) neighbors might a node have?
ALL epees o . O(v))???
visited.add (neighbor) ; D C()
L toCheck.addLast (neighbor) ;
}

}
Let’s look a bit dec?per—what are we measuring_runtime on, exactly?

|V| (the size of the set of vertices)

|E| (the size of the set of edges)

QN wovLd Tye
LOUST CASE Rel

=> Even though both graphs have the same number of
vertices, we’re certainly doing more work in this one because
it has more edges

=> If we follow our original rules, we’d get (O|V|*2)
but it’s actually a bit different than that, because we change the
set of nodes we’re iterating over

Y
/ N C \9\ £~
N 3 h /
o = /
|~
><§<’ / //><
2 vah
'SR / }»
Y ¢~
There are dense graphs and sparse graphs. Some algorithms work well on sparse graphs, and some work
well on densely connected graphs.
- i / -
=D Borh V[AW)c] AFFecr pouTing.

while (! toCheck.isEmpty()) {

Vertex<T> checkingVertex = toCheck.removelLast(); // removeFirst() for BFS . .
If we consider these operations across all

1 ST Sy { iterations lof the while loop, they’ll contribute

return true; O(|V)) to the runtime
}
for (Vertex<T> neighbor : checkingVertex.getOutgoing()) {
if (!visited.contains (neighbor)) {
visited.add (neighbor) ; Q: What runtime will these lines (highlighted in blue)
toCheck addLast (neighbor) ; contgzzlt)e across all iterations of the loop?
=>

Why? Each time we visit a vertex (while loop), we check the edges corresponding to
that vertex’s neighbors only. Across all-iterations of the loop, this means that we check
}é}(ﬂﬂ VLE each edge exactly once. For an example, take a look at the shading in this graph

— llvhere we’ve written out the set of vertices and edges and try to match it to the code.

/4 /Tﬂ—\}@ Verzicee: 74/3/@_')7 ﬁ

\j; @H-’f;ﬂﬁﬂ
ﬂ//c? 4> D

B> D
C» B

Therefore, final runtime is the combination of these contributions.
Frodl Ronmime

Why isn’t it O(|V| * |E|])? Even though the for loop is nested inside the
while-loop;-it runs-on-a different subset of E each time (ie, the neighbors
of checkingVertex). In total, we end up checking each edge exactly once,

so the total runtime is time to loop over each vertex (|V|) plus the time to 0 / V .71., -/—'... l
loop over each edge (|E|).

Take a look at the graph on this page and the typed notes for more
details.

}

Runtime for Dijkstra

toCheckQueue = V (prioritized on routeDist{;Z Cj ’
(1)

cameFrom = empty map

for v in V: /
. . — <:jé{b/)
v.routeDist = inf
source.routeDist = 0 /-»As before, this loop runs |V| times

while toCheckQueue is not emlzfy:
T A e —— ()é_Remove from ideal priority queue: O(log(|v|)
for neighbor in checkingV’s neighbors:
if checkingV.routeDist + cost (checkingV, neighbor) < neighbor.routeDist:C}(l:)
neighbor.routeDist = checkingV.routeDist + cost (checkingV, neighbor) C)())
cameFrom.add (neighbor -> checkingV) (3([

toCheckQueue.decreaseValue(neighborut-decmﬁsevmuehascxbgqvb
(with optimized priority queue implementation—see
notes for details)

backtrack from dest to source through cameFrorr}..
~ovl)

o+ M) + [El)

= 0((1!/} +/E))-,éf(ll/l]

0 0—0—0
e\@@

m . @f«o—@

e

BFS, DFS are search algorithms: “can | find a path from source to
dest”

Dijkstra is a “shortest path algorithm”: how to find cheapest-cost
path from source to dest

|-
.Pr_l__._.rl =
r N_I
I_|._|__|_|_| i
|EEESE
A 1 L
— 2
— ~ 11—, -
-
|_|_|r ikl
» N_l
Irl_n_._l_n_l i
[|EEESE
41 L.
28
— [— 5 -
| -
.Pr_l__._.rl —
B N_l
bl e
|EEESE
Js_1 1 L
-
— ~[— [, -

)

(priot7y QUEUE

PrC
(QUevE)

DFX
(£TCK)

Follow one path until you hita

dead end

Bigger maze comparison

Monday, October 24, 2022

1:02 PM

(Attribution: Pages 4-5 drawn by Milda from Fall 2022 version)

B M

B g In

3 |$ QA fce

A ¢! IG,m
45 6 I O
245 99 23]%0 $7 98] ob 101 us)aa

19 36 1

Jon a1 fimfw

WA WS W T lMI\b_l‘lD

O 105 102 161

40 81 37 33 3495 16 93 96 97 4t

Will go down a path until it
reaches a dead end and then
search from last-seen
branching-off point

= XY

I
o B P

2 & 9] 9 iy 1, |

»5] B T S
ol

al WIiB)

0 14615215t 16d

IJ L 15 126 11l JI610 1S 120 s W 0F[ns IJ 5[0
| [M\Rsd A2 96 (00104 m[g 13) [CTRRLS | \[26 A B
J | el > \5) 64 A BN Y4 J A St o
[[7 3155 53 51 s v 7 0} o\ A osfi &s

I_ _lss | M 163 59 ST [0 50 52)e0 61 63 12 35 I— oz V14| J2425]27 51 St 55 sH

uumuﬂ»nﬁ&mmm| A GHLH 50)26 38 3 M6 48 |51 53 GAl 1a 115 1624k
1318 1225 2e)zo 2\ 3L Jui 39 uofie ws| wd 3\ 33|16 52 Biguo L e 36V 105 WA 23 TAR23 20 5V]\ 53 WO
G 21]ea 6fer Gofsyfur us 44 (5 1 [ve ?ﬂlg_slz W] \%5 g 1y 20 WOl v LA Y50 e\ P
sfeo fin frofes Gefsa fse e 2|z w oy fo [s@ folu
m s (L olesles sels 5o l4r ue 22 Vo 0 TH RN
o o £ 53 ‘\o il e () P) S 2o (31 13 150 5
) T |4 sz Mo

| T obfioeTin i ™ IS (6 R \R VIO iy

X \lo \25
04 \‘zl
\

Will

"fan out" from the

beginning of the maze
(tracking many routes at

once)

A«

(ghofy N

Prioritizes based on

distance to the end

-- turns

out to be fastest for most

mazes

A note on how these mazes were Llabeled: the number represents the timestep when that cell was *added* to the
toCheck stack/queue/priority queue. Neighbors are checked in the order right, up, left, down (a different ordering

can result in different numberings/traversals for the mazes). For A*, Manhattan distance is used and ties are

broken by considering the cell that was added to the PQ earlier (has a lLower timestep number). Colors change every

20 steps

shortest path algorithm (ie, find shortest path to any node from source)—these are different types of algorithms and best-suited for
different use cases! We’'ll talk about the runtime for BFS/DFS/Dijkstra in the next class.

‘Could we use Dijktra’s algorithm to search the maze? BFS/DFS/A* are search algorithms (goal: find path to destination), whereas Dijkstra

