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Objectives

By the end of these notes, you will know:

• How to keep track of information to avoid infinite loops when traversing graphs

• An alternative code outline for traversing graphs

1 Solving the infinite loop

In the previous lecture, we implemented a canReach method:

1 // Vertex class
2
3 public boolean canReach(Vertex<T> dest) {
4 if (this.equals(dest)) {
5 return true;
6 }
7
8 for (Vertex<T> neighbor : this.toVertices) {
9 if (neighbor.canReach(dest)) {

10 return true;
11 }
12 }
13 return false;
14 }

When we run our tests from the previous lecture, the first two pass. The third (Boston to Hartford) goes
into an infinite loop – what happened?

Why is this? It turns out that the culprit is the cycle that exists between Boston and Providence.

1.1 Traversing Data with Cycles

Consider the sequence of computations if we try to compute a route from Boston to Hartford. Since these
aren’t the same city (line 4 of canReach), we’ll try the edges out of Boston. There are two, Providence
and Worcester. So the foreach loop (line 8) will try them in order. The following listing shows the two
recursive calls that canReach would make, as we start the first of them.

bos.canReach(har)
pvd.canReach(har) // <-- run and return from this one first

wos.canReach(har)
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When we check for a route from Providence to Hartford, we follow the edges out of Providence to look
for a route. Given that we are executing pvd.canReach now, the code will try the edges out of Providence
before trying the route out of Worcester (still pending from the original canReach call):

bos.canReach(har)
pvd.canReach(har) // <-- run and return from this one first

bos.canReach(har)

wos.canReach(har) // still haven’t gotten here

Since Boston and Hartford aren’t the same city, we will expand the edges out of Boston (following the
foreach loop in the current recursive call):

bos.canReach(har)
pvd.canReach(har)

bos.canReach(har)
pvd.canReach(har)

// ...
wos.canReach(har) // <-- never get here

wos.canReach(har) // <-- nor here!

Hopefully, you see that this will not end well (or, frankly, at all). The execution never gets to try a
route out of Worcester (which would have worked) because it gets stuck in the cycle between Boston and
Providence.

You might ask whether we could solve this problem by creating the initial graph differently, such that
Worcester appears before Providence in the list of edges out of Boston. That would avoid the issue for this
specific graph, but it wouldn’t solve the cyclic data problem in the general case.

So what do we do? We need some way to track which vertices we’ve already tried, so that we don’t try
them again.

1.2 Tracking Previously Visited Vertices

One way to track vertices we’ve already seen would be to add a field to the Vertex class to record this:

1 class Vertex<T> {
2 boolean visited; // initialize to false
3 ...
4 }

This won’t end up being a good idea in practice. This assumes that only one route check will be running
over the graph at the same time. In real scale systems (like your favorite map application), there can be
dozens of searches happening over the same data at the same time. We therefore need to maintain the visited
information outside the vertices.

We will augment our canReach (renamed canReachHelper) implementation with a separate HashSet

containing the vertices that we’ve already searched from. We check the set before expanding out new calls
from the canReachMemory, and we add to the set of checked vertices before making a new recursive call.
Here’s the code:

Stop and Think: Why use a HashSet here? (this is discussed in the lecture)

1 public boolean canReach(Vertex<T> dest) {
2 return this.canReachHelper(dest, new HashSet<Vertex<T>>());
3 }
4
5 public boolean canReachHelper(Vertex<T> dest, HashSet<Vertex<T>> visited) {
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6 if (this.equals(dest)) {
7 return true;
8 }
9 visited.add(this);

10 for (Vertex<T> neighbor : this.toVertices) {
11 if (! visited.contains(neighbor)) {
12 if (neighbor.canReachHelper(dest, visited)) {
13 return true;
14 }
15 }
16 }
17 return false;
18 }

With this modification, the infinite loop no longer occurs.
One way to see why is to write out the sequence of calls again. We use a shorthand here to denote the

contents visited.

bos.canReach(har, {})
pvd.canReach(har, {bos}) // do not call bos.canReach(har, ...) because it

// has been marked visited; return false
wos.canReach(har, {bos, pvd}) // pvd is in visited because pvd.canReach

// added it to visited, which is the same
// HashSet in memory for all recursive calls

har.canReach(har, {bos, pvd, wos}) // return true!

2 Refining our Graph Traversal Code

The previous code shows a clean recursive solution. However, in order to highlight the differences between
different approaches to traversing graphs (for different purposes), we’re going to rewrite this code so that
the order in which vertices are explored is made explicit.

2.1 Maintaining a List of Vertices to Check

The foreach loop in canReach implicitly sets up an order in which vertices are considered, using recursive
method calls. For sake of clarity, rather than leave the sequence of calls implicit in the unrolling of the
foreach loop, let’s rewrite this code to maintain an explicit list of the cities that we need to check in order.
We’ll add cities to this list as we look for routes, and we’ll use a while loop to process cities from the
list until we’ve run out of cities (we’ll discuss why we tacked on a “DFS” to the method name in the next
section):

Note: this code was updated on October 30 to remove the redundant add to visited that used to be between
lines 13 and 14 of the updated code.

1 // in the Graph class
2 public boolean canReachDFS(Vertex<T> source, Vertex<T> dest) {
3 LinkedList<Vertex<T>> toCheck = new LinkedList<Vertex<T>>();
4 HashSet<Vertex<T>> visited = new HashSet<Vertex<T>>();
5
6 toCheck.addLast(source);
7 visited.add(source);
8
9 while (! toCheck.isEmpty()) {

10 Vertex<T> checkingVertex = toCheck.removeLast();
11 if (dest.equals(checkingVertex)) {
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12 return true;
13 }
14 for (Vertex<T> neighbor : checkingVertex.getOutgoing()) {
15 if (!visited.contains(neighbor)) {
16 visited.add(neighbor);
17 toCheck.addLast(neighbor);
18 }
19 }
20 }
21 return false;
22 }

If you hand-trace this code, you’ll find that we queue up visits to vertices in the same order as in our
original recursive code. The only difference lies in maintaining the list of cities to visit, rather than having
that sequence implicit in the recursive calls that get made.

When we hand-traced this code in lecture, you may have noticed that we add a vertex to the visited

at same time as when we add it to the toCheck list. This resulted in a picture where a vertex was marked
”visited” before we even took it off the list as the checkingVertex (line 10). Why mark a vertex as ”visited”
before we perform a computation on it? Because we are using visited to denote that we have marked the
vertex for computation (i.e. put it in toCheck), so that it does not get added twice.

Our canReachDFS function implements a classic graph algorithm known as depth-first search (DFS).
With depth-first search, when a vertex has more than one outbound edge, we explore all of the paths out
of the first edge (in our example, Providence) before we explore paths out of the other edges (Worcester).
That is, we go deep into the graph before exploring other paths! In the next lecture, we’ll see where in the
code this decision gets made and see an alternative order in which to examine vertices.
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