
Hash maps: Programmer perspective

// Map people to office locations
HashMap<String, String> offices = new HashMap<String, String>();

// Associate this key with this value
offices.put("Lee", "CIT219");
offices.put("Sun", "CIT501");
offices.put("Helen", "B&H802");

offices.get("Sun");
offices.containsKey("Helen”);

// Iterating over a HashMap (one way)
for (String k : offices.keySet()) {

}

Programmer perspective

 - Each key can only map to one value

 - For all operations, Java calls hashCode() on the key to get an integer value

 - All keys with the same code map to the same value

 - Java already has a hashCode for built-in types—if you’re making your own
class, you should make your own hashCode (like equals())

Hashmaps: Implementation perspective

What would the hash map look like after the following operations?
offices.put("Lee", "CIT219");
offices.put("Sun", "CIT501");
offices.put("Helen", "B&H802");

Assume: array size 4, hashCode() returns the length of the key string

0

1

2

3

PUNKV

if
j

Pargo

Jens

Ison Én
ABCD HELEN 5

SIZE Y

IVPAir

Musth
ÉÉ c

KUPAIR
ALSOCALLED KEY LEE KYL tsoBUCKETS ORBINS Uwe citzig

Each array slot
has a linked list of
Key-Value pairs
(KVPair)

For more info,
see whiteboard
and typed notes
for Lecture 16

Key key.hashCode()
Array slot

(% 4 in this example)

(NOTE: This isn’t how Java’s hashCode() on strings
works! We made this up specifically for this example so
it’s easy to do on paper)

(These KVPair objects are part of a LinkedList. To keep the diagram
clean, we haven’t drawn the LinkedList objects here.)

i
EDGES

NEIGHBORS
OFBOSTON

Manchester

BostonWorcester

Hartford
Providence

Conveys relationship
between vertices

(“is there a bus route
from one city to
another”)

How is this different from a tree?

 - No inherent hierarchy like trees (no “root”)

 - Can have “cycles”

What kinds of classes, datatypes etc would you use to represent this?

Some questions/options

For each each node, have a List of neighbors
•
Should each node be a class? Or just, eg, a string?
•
List of String -> String pairs to represent each edge •

public class CityVertex {
LinkedList<CityVertex> toCities;
String name;

public CityVertex(String nm) {
this.name = nm;
this.toCities = new LinkedList<CityVertex>();

}

public void addEdge(CityVertex toVertex) {
this.toCities.add(toVertex);

}

public String toString() {
String retstring = "City " + this.name + " goes to { ";
for (CityVertex toCity : this.toCities) {

retstring += toCity.name + " ";
}
retstring += "}";
return retstring;

}

A NODE

LIST OFNEIGHBORS

J
ADD A
NEIGHBOR

public class TestCityVertex {
public static void main(String [] args) {

CityVertex man = new CityVertex("Manchester");
CityVertex bos = new CityVertex("Boston");
CityVertex pvd = new CityVertex("Providence");
CityVertex wos = new CityVertex("Worcester");
CityVertex har = new CityVertex("Hartford");

}
}

ADDING EDGES to
CREATE OUR GRAPH

