
Working with HashMaps

// Map lab times to room numbers
HashMap<String, String> labRooms = new HashMap<String, String>();

// Associate this key with this value
labRooms.put("Mon 4-6", "CIT219");
labRooms.put("Tue 6-8", "CIT501");

labRooms.get("Mon 4-6"); // Returns "CIT219"

// Changes the value mapped to this key
labRooms.put("Mon 4-6", "CIT444"); //
labRooms.get("Mon 4-6");

labRooms.get("Wed 8-10"); //

if(labRooms.containsKey("Mon 4-6")) {
// . . .

}

HashMaps, in practice

 - Map a “key” to a “value” (HashMap<K, V>)

 - Given key, hash map provides constant time (O(1)) access to lookup value

 - There can be at most one value per unique key

 - Key, Value can be any Java type

HashMap<String, List<String> // Could have one key map to multiple things
this way (still one object)

How to BUILD A NasaMAP

AYLETT INDEX

O O Acct O
I 1 Acct I
2 2 Dat 2

3 3 Hath
Y y Acct4

5 T Acct5

6 6 Act 6
c

i s
s e s

1029 1029 Act1029
1030 1070 Acct10301

1031 1071 Acct1031

(For the remainder of these notes, we’ll focus on how a hash map
is implemented. As a programmer using hash maps, it’s not
necessary to understand these details—but we can learn a lot
about data structures by seeing how hash maps work!)

Consider the array-based version we were discussing for
account numbers: the account number serves as an
array index to get an Account object

=> This has constant time lookup, BUT

 - Waste memory when removing accounts

 - Need array as big as highest account number

 - “Key” == array index…

 what about things that aren’t integers?

=> This approach gives us the performance we want, but
has a lot of setbacks. How can we do better?

Speeding Up Access to Accounts

000005

104216

222112

327111

415831

999996

0

1

2

3

4

5

t

gg

FIFI

To start: what if we had some
mathematical function that could turn
account numbers (an integer) into an array
slot?

We can do this using modulo with the size
of the array—

Modulo (%): remainder when you do division

0000005 % 6 = 5

0000019 % 6 = 1

0000011 % 6 = 5

AcctNum % Array Size

=> returns number in range 0..(array size - 1)

=> However, with modulo it’s possible to have multiple
keys map to the same slot!!!

So how does it work?

 - Internally, HashMap is based on an
array

 - Keys are mapped to slots using %

 - Each slot contains a linked list of
entries that mapped to that slot

MIND Scot

⑧ SEE It key

ÉFI

E

F

Get(K)

 slot = k % (size of array)

 LinkedList l = array[slot];

 for(Account a : l) {

 if a.idNum == k

 return a

 }

What would it look like to implement get()?

(Partially)

Problem: what goes in the linked list?

We need to know if the item in the list matches the key k, so we need to store
both the key (which tells us what item it is) and the value (the thing we want to
look up) in the hashmap!

Need to keep track of both key and value in linked
list

=> LinkedList contains Key Value pairs (KVPair)

MOST OPTIMISTIC CASE MOSTPESSIMISTIC CASE

BIFF IF assets

What about runtime?

 Lots of elements in one array slot
(long linked list => long search time),

 Many wasted array slots

Each element in its own array slot,

no wasted (empty) array slots

Ideally, want lists to be small so search is fast

Things that we can control to help this happen:

 - Initial array size (in practice, a prime number)

 - If/when you resize the map (75% full)

 - Hashing function (math)

Need: a way to turn an arbitrary object (String, Course,
Account, whatever) into an integer

 => integer, can do % => get to a slot

How to handle keys that aren’t integers?

Every object has a function called hashCode()

public int hashCode() {

}

public interface IDictionary<K, V> {
public V lookup(K key) throws KeyNotFoundException;
public V update(K key, V value) throws KeyNotFoundException;
public void insert(K key, V value) throws KeyAlreadyExistsException;
public V delete(K key) throws KeyNotFoundException;

}

public class Chaining<K, V> implements IDictionary<K, V> {

private static class KVPair<K, V> {
public K key;
public V value;

}

public Chaining(int size) { . . . }

private KVPair<K, V> findKVPair(K key) throws KeyNotFoundException {
. . .

}

public V lookup(K key) throws KeyNotFoundException {
KVPair<K, V> pair = findKVPair(key);
return pair.value;

}

public V update(K key, V value) throws KeyNotFoundException {
KVPair<K, V> pair = findKVPair(key);
V oldValue = pair.value;
pair.value = value;
return oldValue;

}

public void insert(K key, V value) throws KeyAlreadyExistsException {
. . .

}

public V delete(K key) throws KeyNotFoundException { . . . }
public boolean equals(Object ht) { . . . }
public String toString() { . . . }

}

