
Model-View-Controller / Banking service recap

Fontan A LIME

LOGINSCREEN LOGIN FINDCUSTOMER

Inffte t.TL nioiiea
HANDLES ERROR

Key takeaways:

 - MVC: can separate out user interface/data structures from
program logic => flexible to change

 - Exceptions: cleaner/more flexible way to handle errors
separate from using “return”

Thinking about how exceptions work

LOGINSCREEN

W
1 LOGIN

LOGINSCREEN

LOGIN U for
F HYPHEN cost

30 30 Returns LOGIN

LOGINSCREEN

FINDCUSTOMER I
CHECKPWD IFi

LOGIN

TRYCATCH LOGINSCREEN

FINDCUSTOMER

LOGIN

LOGINSCREEN
MAIN

TRYCATCH

Call stack: methods that are currently
“outstanding” or being executed

 - How programming language keeps track of
where to go when a method returns

Normally,
we pass
information
with “return”

What if findCustomer throws an exception?

If an exception is thrown, Java stops
executing and goes back on the call stack
until it reaches the nearest try/catch that can
“handle” the exception

In this case,

 - findCustomer throws CustNotFoundExn

 - control goes immediately back to
loginScreen, which is the first (only) method
in the call stack that can catch
CustNotFoundExn

public class CustomerList {
private LinkedList<Customer> customers;

public Customer findCustomer(String custname) throws CustNotFoundExn {
for (Customer cust:customers) {

if (cust.nameMatches(custname))
return cust;

}
throw new CustNotFoundExn(custname); // instead of returning null

}
}
—-----------------------------

public class BankingService {
CustomerList customers;

public Boolean login(String custname, String withPwd)
throws CustNotFoundExn, LoginFailedExn {

Customer cust = customers.findCustomer(custname);
if (cust.checkPwd(withPwd)) {

return true;
} else {

throw new LoginFailedExn(custname);
}

}
}
—-----------------------------

public class BankingConsole {
BankingService controller;

public void loginScreen() {
boolean loggedIn = false;
while (!loggedIn) {

// Prompt for input
try {

loggedIn = controller.login(username, password);
System.out.println("Thanks for logging in");

} catch (CustNotFoundExn e) {
System.out.println("No such user " + e.custname);

} catch (LoginFailedExn e) {
System.out.println("Password mismatch for " + e.custname);

}
}

}
}

it

=> In this case, keep looping so long as loggedIn is
false. This lets us keep retrying logins until
controller.login returns true (successful login)

(It’s okay if you’re not totally comfortable with while loops yet—
we’ll see more with them in a few weeks!)

“while loop”: loop as long as condition is true

=> Useful when you don’t know how many times loop will
run ahead of time (eg. how many retries the user will need)

Speeding Up Access to Customers

public class AccountList {
private LinkedList<Account> accounts = new LinkedList<Account>();

public Account findAccount(int forAcctNum) {
for (Account acct:accounts) {

if (acct.numMatches(forAcctNum))
return acct;

}
return null; // not yet converted to exceptions

}
}

o
o
o

WOULD LIKE TO BE ABLE TO

Look UP ACCOUNTS FASTER

WANT CONSTANT TIME
LOOKUP

NO

way we used AN ARRAYO Acct O
I Achi
2 HIM

y How WOULD THIS BREAK Down
3 E J
F F

EXPANDINGARRAY

56 Acctsat
g

REMOVE ACCOUNT

57

i
i i

HASHMARC INTEGER
ACCOUNT

A
KEYTYPE

RESCUE

Want: data structure that associates account numbers with accounts
that’s more flexible, and can do lookups in constant time

=> HashMap (also called Dictionary, Hash table)

 - Constant time lookup of a key matched to a value

public void hashMapExample() {
HashMap<String, String> labRooms = new HashMap<>();
labRooms.put("Mon 4-6", "CIT219");
labRooms.put("Mon 6-8", "B&H999"); // Associate this key with this value
labRooms.put("Tue 4-6", "CIT219"); // Multiple keys with same value OK!
labRooms.put("Mon 4-6", "CIT317");
// Can't have a key point to two values simultaneously!

// . . .
labRooms.get("Mon 6-8"); // Returns CIT219 (Where is Mon 6-8 lab?)
labRooms.get("Mon 4-6"); // Returns CIT317 => Only one value with a

given key

// Could also make...
HashMap<String, List<String>> multiLabRooms = new HashMap<>();
// multiLabRooms.put("Mon 4-6", ["X" ,"Y"]) // shorthand for list

}

Example for how to work with Java’s HashMap

