
Lecture 12 – ArrayLists and Runtime

Summarize Worst-Case Runtimes (in terms of number of elements in the list)

LinkList MutableList (Link) ArrList

size

addFirst

addLast

get(index)

LIKEAWZ

GINI LINEAR OLN LINEAR OLD CONSTANT

SAY WE HAVE LIST
With STRINGS CHIBI D

FATALDE EJ

FijEEAES

GET 2 too t 2 1
T

START INDEI

So far we’ve seen three ways to look at lists…

LinkList (or ImmutableList)

 - Has a chain of nodes with (at least) a “next” field

 - Each node could be at any spot in memory

For get() => Need to follow “chain” of nodes (or Links) to get a specific item

 => Linear runtime over the size of the list => O(N)

MutableList (like HW2)

 - Same “chain” of nodes

 - MutableList class has “start” field that points to nodes

 - MutableList might have other fields like in HW2 (end, etc.)

For get() => same as LinkList => O(N)

ArrList (ArrayList in Java)

 - Relies on arrays: at start, reserve a fixed number of consecutive
memory slots

 - When array is full, resize by creating a new array and copying over all
elements

For get() => Since the array elements are always in contiguous
memory slots, can look up the i’th element just based on the
starting address value.

 => Just add to the starting address => constant time => O(1)

S 5 7 12

Batting1004
lazy 8523g 85991

GET F

Runtime of AddLast/AddFirst with Resizing

public class ArrList {
String[] theArray; // the underlying array that stores the elements
int eltcount; // how many elements are in the array
int end; // the last USED slot in the array

private void resize(int newSize) {
// make the new array
String[] newArray = new String[newSize];
// copy items from the current theArray to newArray
for (int index = 0; index < theArray.length; index++) {

newArray[index] = this.theArray[index];
}
// change this.theArray to refer to the new, larger array
this.theArray = newArray;

}

public void addLast(String newItem) {
if (this.isFull()) {

// add capacity to the array
this.resize(this.theArray.length + 1);
// now that the array has room, add the item
this.addLast(newItem);

} else {
if (!(this.isEmpty())) {

this.end = this.end + 1;
}
this.eltcount = this.eltcount + 1;
this.theArray[this.end] = newItem;

}
}

public class ArrTest {
ArrList flavors = new ArrList(2);
flavors.addLast("mint")
flavors.addLast("grape")
new Course("cs1410", 200)
flavors.addLast("lemon")
flavors.addLast("cherry")

}

—-----------------------------------
-

environment
flavors → @1221

@1221
ArrList
theArray: @1222
end: 1 eltcount: 2

@1222 "mint"

@1223 "grape"

@1224 Course("cs1410", 200)

@1225

@1226

@1227

@1228

Worst CASE Routine

of

É_ pRESIZE f

i

For now, we make a new array 1 larger than the
previous one each time we resize.

We could call this the “resize policy” (This isn’t a
very good one, we’ll learn a practical one soon.)

What’s the worst case runtime of addLast?
It’s a big more nuanced before, because it depends on if the array is full:

 If array is full => resize => linear time operation (copy)

 If array is not full => constant time (add to a slot)

=> As developers, we want to think about how often we “pay the cost” of resizing

How many resizes get done across N calls to addLast? How does this affect runtime?

ArrList flavors = new ArrList(2);

Resize by 1 Resize by 2 Resize by double

flavors.addLast("mint")

flavors.addLast("grape")

flavors.addLast("lemon")

flavors.addLast("cherry")

flavors.addLast("mango")

flavors.addLast("orange")

flavors.addLast("coffee")

CONST CONST
CONST CONST

j I
RESIZE CONST

RESIZE RESIZE

RESIZE CONST

RESIZE RESIZE

SEE NEXT PAGE
Each resize is linear time due to the copy

What happens in practice (as a general rule)

 => When you resize, double the size of the array

For N calls, resize N/2 times => halved runtime cost => still
linear runtime O(N)

Overall, It’s helpful to think about the amortized cost, which is
the runtime across multiple calls to a method.

ADD 2 ON EACH RESIZE

DOBgptff.IE9
MINT
GRAPE GRAPE

LADDLASTLEMON

a mint
RESILE LADDlast Emon

9 MW

toResize

1 GRAPE
2 LEMON tents3 CHERRY

CHERRY
ADDCASTMANGO

O MINT
RESIZE

ADDLASTMANGO
I GRAPE

g my
NEEDSTORESIZE

2 LEMON
GRAPE3 CHERRY

Y MANGO
3

LEMON

5 ORANGE CHERRY

4 MANGO

e myAPD
LAST COFFEE 5 ORANGE

6 COFFEERESIZED

y CHOCOLATEI GRAPE
2 LEMON
3 CHERRY

4 MANGO

5 ORANGE ITEMSCOPIED 2 8 16 32
seen6 COFFEE

7 CHOCOLATE

FORTHIS VERSION

ITEMSCOPIED 2 Y
Bear

New size: 8

Items copied: 4

addLast’s before

 next resize: 4

New size: 4

Items copied: 2

addLast’s before

 next resize: 2

New size: 4

Items copied: 2

addLast’s before

 next resize: 2

New size: 6

Items copied: 4

addLast’s before

 next resize: 2

New size: 8

Items copied: 6

addLast’s before

 next resize: 2

Number of copies still grows linearly as array size grows
=> linear runtime! => O(N)

By doubling the array each time we resize, we pay effectively pay a
fixed portion of the cost equal to the number of items we add. Thus,
if we divide up the total cost of copying over all elements in the
array, the cost to add is constant!

