Lecture 10 — Addresses, Equality and ArrayLists Can think of the heap as a series of

addresses

- An address is a label for a
specific spot in computer memory
- Every object lives at one address

Lesson: Memory Diagrams with Addresses Explicit

// the 1list [3, 7]
MutableList<Integer> L = new MutablelList<>();
L.addFirst(7);

L.addFirst(3);) . p/FFM UJ.A}I
UG-~ wye i RERP

These are
addresses, or
references, that
refer to other

) wg’ objects in the heap

Activity: Draw the memory diagram with addresses for the following program

public void Example2() {
MutableList<Integer> L = new Mutablelist<>().;
L.addFirst(6);
Course ai = new Course(“CSCI 1410", 200); -HE,)‘V
\.addFirst(B); 1

STher” @w‘ov

| Y Troo) [%
N

u]/b (\

X003 C@Uﬁgﬁ’ S0 m
I
Neooy [0 [T @z |

loos

Al

\

=> When we make new objects (“new”) we use the next space in the heap
=> Addresses (or slots) in the heap are used (“allocated”) in the order in which
the code is run (when we call “new”)

Question: What does it mean for lists to be “the same”

public static void equalityExample() {

3

N\
\/.\ ° r— | @1020 | Mutebletist(start: @1022)

MutableList<Integer> L1 = new MutablelList<Integer>();
L1.addFirst(6);

L1.addFirst(8);

System.out.println("L1 is " + L1);

MutableList<Integer> L2 = new MutablelList<Integer>();
L2.addFirst(6); -

L2.addFirst(8);

System.out.println("L2 is " + L2);

DIEF NOATwL Fore LNAT /T NLduS Fou o)

// what do you expect each of these to produce? (what do == and .equals mean?) 7@7 'Z7ef

System.out.println(L1 == L2);
System.out.println(L1.equals(L2) ;@ WUAL_’)
System.out.println(L1.toString() == L2.toString())'3 31[1_(”6 -] &“\'\Wb

System.out.println(L1.toString().equals(L2.toString()));

@1021 | Node(item: 6, next: null)

@1022 | Node(item: 8, next: @1021)

;> @1023 | MutablelList(start: @1025)

@1024 | Node(item: 6, next: null)
2!

@1025 | Node(item: 8, next: @1024)
~

L1 == L2: “are L1 and L2 at the same location in memory”. (Also called “Address comparison”
“pointer comparison”)
=> No, this is false

.equals: Allows programmer to control what equality should mean for this type of object.
(“Structural comparison”)

=> Programmer would need to write equals method in MutableList (look at all elements, make
sure data is the same...).

Comparing strings with == will almost always fail => strings are objects, they live at different
locations in memory. (== is okay for int, bool, float, ...)

=> Should compare strings with .equals, ie. str1.equals(str2). This checks if the strings have
the same characters

Course c1 = new Course(“cs200”, 80)
Course c2 = new Course(“cs200”, 84)

Should c1.equals(c2) be true?

=> As programmers, we COULD define .equals to just compare the course name and not the
enrollment. This is a decision we would need to make when we write the equals method

Here’s an example of writing a Course class with an equals method:

public class Course {
private String name;
private int enrolled;

@0verride
// Example of an equals method. Since equals can be called with any
// other object as the argument, we use type Object for the parameter
public boolean equals(Object otherObj) {
if (!(otherObj instanceof Course)) {
// if otherObj isn't a Course, this and otherObj aren't equal
return false;
} else {
Course otherC = (Course)otherObj; // tell Java otherObj is a Course
return (this.name.equals(otherC.name)) &&
// eliminate next line if only want to compare on course numbers
(this.enrolled == otherC.enrolled);

iy oNE confMES
B Fletne

WAHAT S€quaxe pgr
Review: Continuing from last lecture—-memory layouts of lists / ADD;))L;T ADp [AQ/‘ CALU

Consider the following layouts for the list [8, §J , 4] — what program might generate this heap layout?

- g

— Can foIIovy re_ferences to see order of
@1012 | MutableList(start: @1017) elements in st Ch
| @1013 | Node(item:6, next:@1016) j AooFusr (6) o Ao larr ()
@1014 | Node(item:3, next:@1013) e Ap F;,gg«(?) [3/ é,]

@1015 Course(name: “CSCI11410”, enroliment: 200)

@1016 | Node(item:4, next:null) N A0p LAS?’("() [)/LI “{1
1017 | Node(item:8, next:@1014 i A9
21(_)_1_8_ ode(item:8, next@) D/fmgr(g/) [g},ﬁ/qj

WhAIcH egJeas Wene (peAren. , L
Question: How would this memofy layout be different if we were making an immutable list with the same
sequence of addLast/addFirst calls?

Question: Imagine this list were named L in the environment. What sequence of memory objects get visited to
compute L.get (2) [which should return 6]?

(7561 |

Can’t just see which element is element 2 by looking at the heap => need to follow the chain of

references (many colors or arrows above) to find out! ':) O (N)
=> This means we need to search the whole list, which has linear runtime!

Activity: Now imagine the list had the following layout in memory (all the items consecutive and in order).
What sequence of memory objects would get visited to compute L.get (2) ?

CH34, 13

ﬁ @1012 ConseclList
Where isielement 2 in this list?

@1013 8 Just from the picture we can see it’s at @1015

3 Because this implementation has the array elements in consecutive slots,
we can figure out element 2’s address just by taking the address where the
?| @1015 6 list starts and adding to it:
4

@Blois = Glojz t2 +|

@1018 ADpLESS oF Sty ofF
ELEer 2 =S

Therefore, we can implement get(i) by looking up the element at (address of I|st) +i+ 1

! =>0(/(
=> This just involves adding a constant value to an address => constant runtlme"

These two kinds of lists organize elements differently. As such, they will need different implementations of the
core list methods (get, addLast, etc). For now, consider get, which takes a position in the list and returns the
element at that index.
e In the first organization (MutableList, but also applies to LinkList), the elements aren’t in order, so we
have to follow references until we count off to the position we asked for. This means get(index) is linear
in the size of the list (since we could have asked for the last index).

e In the second (ConsecList), we know exactly where each position is stored. Better still, we can compute
the address where a position lies. If we want position p, for example, it is in address

ConsecList-addr + 1 + p
This means that get is constant time in a ConsecList.

The rest of this lecture and most of next will be on how to build ConsecList.

