
Lecture 10 – Addresses, Equality and ArrayLists

Lesson: Memory Diagrams with Addresses Explicit

// the list [3, 7]
MutableList<Integer> L = new MutableList<>();
L.addFirst(7);
L.addFirst(3);

MIND Now DIFFERENT WAY
TO DRAW HEAP

sa ea iÉ
too

Dinky
iii

1004

11005

i

Can think of the heap as a series of
addresses

 - An address is a label for a
specific spot in computer memory

 - Every object lives at one address

These are
addresses, or
references, that
refer to other
objects in the heap

Activity: Draw the memory diagram with addresses for the following program

public void Example2() {
MutableList<Integer> L = new MutableList<>();
L.addFirst(6);
Course ai = new Course(“CSCI 1410”, 200);
L.addFirst(3);

}

o Tying
kinfI

i

too y 4Nk

1005
=> When we make new objects (“new”) we use the next space in the heap

=> Addresses (or slots) in the heap are used (“allocated”) in the order in which
the code is run (when we call “new”)

Question: What does it mean for lists to be “the same”

public static void equalityExample() {
MutableList<Integer> L1 = new MutableList<Integer>();
L1.addFirst(6);
L1.addFirst(8);
System.out.println("L1 is " + L1);

MutableList<Integer> L2 = new MutableList<Integer>();
L2.addFirst(6);
L2.addFirst(8);
System.out.println("L2 is " + L2);

// what do you expect each of these to produce? (what do == and .equals mean?)
System.out.println(L1 == L2);
System.out.println(L1.equals(L2));
System.out.println(L1.toString() == L2.toString());
System.out.println(L1.toString().equals(L2.toString()));

}

@1020 MutableList(start: @1022)

@1021 Node(item: 6, next: null)

@1022 Node(item: 8, next: @1021)

@1023 MutableList(start: @1025)

@1024 Node(item: 6, next: null)

@1025 Node(item: 8, next: @1024)

I
I

DIFF NOTATIONS FOR WHAT IT MEANS FOROBJETS
TO BE

I 0102 cause
STRING STRING

v1

12 7

L1 == L2: “are L1 and L2 at the same location in memory”. (Also called “Address comparison”
“pointer comparison”)

 => No, this is false

.equals: Allows programmer to control what equality should mean for this type of object.
(“Structural comparison”)

 => Programmer would need to write equals method in MutableList (look at all elements, make
sure data is the same…).

Comparing strings with == will almost always fail => strings are objects, they live at different
locations in memory. (== is okay for int, bool, float, …)

 => Should compare strings with .equals, ie. str1.equals(str2). This checks if the strings have
the same characters

THISONE COMPARES

BOTH FIELDS

=> As programmers, we COULD define .equals to just compare the course name and not the
enrollment. This is a decision we would need to make when we write the equals method

Course c1 = new Course(“cs200”, 80)

Course c2 = new Course(“cs200”, 84)

Should c1.equals(c2) be true?

Review: Continuing from last lecture–memory layouts of lists

Consider the following layouts for the list [8, 3, 6, 4] – what program might generate this heap layout?

@1012 MutableList(start:@1017)

@1013 Node(item:6, next:@1016)

@1014 Node(item:3, next:@1013)

@1015 Course(name: “CSCI1410”, enrollment: 200)

@1016 Node(item:4, next:null)

@1017 Node(item:8, next:@1014)

@1018

Question: How would this memory layout be different if we were making an immutable list with the same
sequence of addLast/addFirst calls?

Question: Imagine this list were named L in the environment. What sequence of memory objects get visited to
compute L.get(2) [which should return 6]?

Activity: Now imagine the list had the following layout in memory (all the items consecutive and in order).
What sequence of memory objects would get visited to compute L.get(2)?

@1012 ConsecList

@1013 8

@1014 3

@1015 6

@1016 4

@1017

@1018

WHATSEQUENCE OF
ADDFIRSTADDLASTCALLS

I

o
ADDFIRST3 13,6

36,4
I ADDFirst 8 8,316,4

ORDER INHEAP ORDER IN
WHICH OBJECTS WERECREATED

inity3,649

ON

436,9

I
s.EE I2t2t1StegtsFF
ELEMENTZ

I t I OLD

Can follow references to see order of
elements in list

Can’t just see which element is element 2 by looking at the heap => need to follow the chain of
references (many colors or arrows above) to find out!

 => This means we need to search the whole list, which has linear runtime!

Where is element 2 in this list?

Just from the picture we can see it’s at @1015

Because this implementation has the array elements in consecutive slots,
we can figure out element 2’s address just by taking the address where the
list starts and adding to it:

Therefore, we can implement get(i) by looking up the element at (address of list) + i + 1

 => This just involves adding a constant value to an address => constant runtime!!

Arrays in Code

import java.util.Arrays;

public class Main {
public static void main(String[] args) {

