
Lecture 9 handout — generics, equality, lists in memory, lists with addresses

Question: How do we make our List classes have elements of any type (not just int)?

public class Node {
int first;
Node next;

}

public class MutableList {
Node start; // front of the list

public void addFirst(int newItem) {
newNode = new Node(newItem, this.start);
this.start = newNode;
return this;

}
}

at
TX

TYPE VARIABLE
USUALLY SINGLECAPITAL

LETTERS

NODECTT

WHENEVER WE

E.eansintepoot.tt
dyingLINKEDLISTLSTRING TYPE NEEDTO

FILL IN TYPE

BACKGROUNDINDÉ

rest

gigging

III
Visa ENROLL

3
THIS ENROLLMENT 4 1

Cs 200 ENROLLC E

z
THIS ENROLLMENT 4 1

Consider the following code:

Course visa = new Course(“visa120”, 18)

Course cs200 = new Course(“cs200” 80)

visa.enroll()

cs200.enroll()

When we call enroll() on each object, Java will set up the name “this” to point to
the object on which it was called.

When visa.enroll() returns, the name this is removed.

When we call cs200.enroll(), Java again sets up “this”—now it points to the
cs200 object.

Question: Does list-immutability extend to the contents within list elements?

public static void courseExample() {
Course visa = new Course("visa120", 18);
IList<Course> C1 = new EmptyList<Course>(); // NOTE -- IMMUTABLE LIST
C1 = C1.addFirst(new Course("csci200", 470));
C1 = C1.addFirst(visa);
visa.enroll();

// what do we expect to see here?
System.out.println(C1);

}

[for reference for this question]

public class Link<T> implements IList<T> {
T first;
IList<T> rest;

public IList addFirst(T newElt) {
return new Link(newElt, this);

}
}

8

END
visa

a Empathy

HEIDI
Common mistake: the link does not contain the name
(from the end) visa. First just “points to” or “refers to”
the visa object itself.

=> The heap can’t look back to the environment, it only
refers to objects

How does the call visa enroll s work

when we call a method the namethis
goes in to

the environment referring to the

object on which the method was called

then the body of
themethod gets evaluated

visa enroll s

This enrollment
this enrollment t l

a Dj

EEEthis

Note that we have an immutable list but the

contents changed what sense does that make

The real question is
what does immutability

of a list even cover

Immutability covers the structure of

a list the link objects it
contains

and what objects are accessed

via first The contents of those

objects however are not part of

the list and can be changed
the bluish high lights

show

what cannot change
in an

immutable list

a Pt

Lesson: Memory Diagrams with Addresses Explicit

// the list [3, 7]
MutableList<Integer> L = new MutableList<>();
L.addFirst(7);
L.addFirst(3);

Hi FI

7
a

STARTERuh

ÉEfi gNULL
BIJi

For more info on why we have both mutable and immutable lists, see the notes for lecture 8.

We’ll see more about how mutable lists look in memory next class.

