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Objectives

By the end of this lecture, you will be know:

� The abstractions of Stack and Queue

� How to compute paths between nodes

� How to compute shortest (or least costly paths between nodes

1 DFS vs BFS, revisited

Before we move on to our third graph algorithm, we will wrap up our discussion on BFS and DFS. ’

1.1 A word on data structures

We saw in the last lecture that the difference between our LinkedList-based DFS and BFS implementations
was that, for DFS, we used addLast and removeLast, whereas for BFS, we used addLast and removeFirst.

For DFS, we could have very well used addFirst and removeFirst. The key idea is that we wanted to
remove the latest/last element we added. The key abstraction here is that we were using a Last-In-First-Out
(LIFO) add and remove strategy. A LIFO is also called a stack, a common data structure in computer
science. You will often see the add method of a stack called push and the remove method called pop.

Similarly, for BFS, the key idea is that we wanted to remove the very first element we added. This is
called a First-In-First-Out (FIFO). A FIFO is also alled a queue, another common data structure in computer
science. You might sometimes see offer or add used to add elements to a queue, and poll or remove used to
remove elements from a queue.

Note that, in Java, LinkedLists offer you use of all of these methods (like push and pop). That is
because LinkedLists can be used to implement stacks or queues, when these are viewed as interfaces!

Being comfortable with the distinction between stacks and queues will come in handy when studying
algorithms in computer science.

1.2 When to use BFS or DFS

Which algorithm (BFS or DFS) should you use in practice? It depends on context.

� If your goal is to find the shortest path length, use BFS. Since BFS checks all nodes at each distance
from the starting node before looking at any node at distance + 1, if there are two paths of different
lengths to the same node, BFS detects the shortest one first.
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� If your goal is detect cycles, use DFS. As soon as DFS tries to process a node that is already in the
visited list, you know you have a cycle in the graph. Cycle-detection ends up being a key component
of some advanced computing applications.

� Also, given the shape of your particular graph and characteristics of your route queries, one of BFS or
DFS might perform better in practice. For example, if your graph is very wide (each vertex has a lot
of neighbors) and you know the path you’re looking for exists deep in the tree, it will save memory to
use DFS.

1.3 Tracking Routes

The code we wrote for canReachDFS will tell us whether a route exists between two vertices, but not which
vertices to take to get between vertices. To produce the route, we also need to record the vertex through
which each vertex entered the toCheck list.

To do this, we will create a data structure to store information about how the computation had progressed
so far. Specifically, we will create a HashMap that maps each vertex to the vertex that added it to the checklist
in the part of the code where we add a neighbor to toCheck. Let’s call this HashMap cameFrom. The new
code is on lines 5 and 18:

1 // in the Graph class
2 public List<Vertex<T>> routeDFS (Vertex<T> source, Vertex<T> dest) {
3 LinkedList<Vertex<T>> toCheck = new LinkedList<Vertex<T>>();
4 HashSet<Vertex<T>> visited = new HashSet<Vertex<T>>();
5 HashMap<<Vertex<T>, Vertex<T>> cameFrom = new HashMap<<Vertex<T>,Vertex<T>>();
6
7 toCheck.addLast(source);
8
9 while (! toCheck.isEmpty()) {

10 Vertex<T> checkingVertex = toCheck.removeLast();
11 if (dest.equals(checkingVertex)) {
12 // backtrack through cameFrom and return route
13 }
14 visited.add(checkingVertex);
15 for (Vertex<T> neighbor : checkingVertex.toVertices) {
16 if (!visited.contains(neighbor)) {
17 toCheck.addLast(neighbor);
18 cameFrom.put(neighbor, checkingVertex);
19 }
20 }
21 }
22 // return empty list or throw exception
23 }

Now, consider running this new code to find the route between Boston and Hartford.
First, the contents of toCheck are just bos.
The first time through the while loop, we remove bos from toCheck, we add its neighbors to toCheck

and update cameFrom:
Contents of toCheck: pvd, wos
Contents of cameFrom: pvd → bos, wos → bos
The second time through the while loop, we remove wos from toCheck (remember that we are removing

from the end of the list), and loop through its neighbors
Contents of toCheck: pvd, har
Contents of cameFrom: pvd → bos, wos → bos, har → wos
Finally, we remove har from toCheck and see that we have arrived at the destination. Then, starting

with har, we can backtrack to bos by looping back through cameFrom (pseudocode provided):
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retlist = []
checking = dest
add dest to the front of retlist
while (checking != source):

checking = cameFrom.get(checking) (find out how we got to checking)
add checking to the front of retlist

return retlist

For the bos to har route, checking is initialized to har and retlist becomes [har]. The next time
through the loop, checking becomes wos (because cameFrom maps har to wos) and retlist becomes [wos,
har]. The subsequent time through the loop, checking becomes bos and retlist becomes [bos, wos, har],
and we terminate the loop because we have backtracked all the way to Boston (the source). We can then
return retlist as the path that got us from Boston to Hartford.

2 Finding Shortest (cheapest) Paths: Dijkstra’s Algorithm

Now assume that we care about not just finding some path, but about finding a good path. There are many
definitions of good paths. One of them might be a path that cost the least, or that had the shortest total
distance. For this, we want to use an algorithm called Dijkstra’s Algorithm.

Dijkstra’s algorithm assumes that our graphs have costs or weights on the edges. Without these, there’s
no useful notion of a “shortest” path. Here’s a different graph, this times with edge weights. In this graph,
we will also assume that edges are bidirectional (meaning that you could travel them in either direction). We
call this an undirected graph, where the previous graph we were working with was directed. The algorithm
we highlight here will work with directed and undirected graphs.
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Figure 1: An example weighted graph. Edges are undirected; travel is possible in both directions at the
same cost.

How do we think about finding short/cheap paths? A naive approach would be to take the cheapest edge
each time. However, this might lead to a case where the solution is actually wrong! Consider getting from
Boston to NYC in this way: we would first try going to Providence, then to Hartford, and then end up in
Ithaca. But from Ithaca, the only remaining paths are really expensive – we would end up paying a cost of
201 to go to DC, and then 200 more to finally get to NYC. This is clearly not the optimal path – by looking
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at this graph, the actual optimal route is from Boston to Providence to Hartford to NYC, which a cost of
100.

Another approach might be to enumerate all possible paths between Boston and NYC (for example, by
writing a DFS or BFS that doesnt immediately terminate), and then computing their costs and choosing
the lowest one, but this turns out to not be optimally efficient.

To conceptualize a better algorithm, think back to our discussion of how we might add items to the
toCheck list. Shortest paths involve some sort of optimization, or priority of which nodes to consider. In
this case, we want to check nodes in an order based on the cheapest way to make progress in our search for
a path.

For example, if we start at Boston, we can compute the cost to get to Hartford (300) and Providence (30),
and then select the cheaper of the two and update the costs of its neighbors accordingly. In this example, we
would first consider Providence, and compute a new cost of getting to Hartford (30 + 50), which is cheaper
than the previous cost we had. Thus, we would update our knowledge of the cheapest route (so far) to
Hartford.

The data structure we will use to select the next vertex to consider is called a Priority Queue. You
worked with Priority Queues in lab, and the main idea is that you can assign values of comparison to every
item in a priority queue and get the item with the smallest value of comparison in log(N) time.

For our value of comparison, we will use the smallest computed distnce (so far) from the source vertex.
Initially, all vertices are infinitely far from the starting vetex (except the start vertex itself).

After initialization, we should see the following estimates in toCheckQueue:
[BOS:0, PVD:inf, HAR:inf, ITH:inf, NYC:inf, DC:inf]

The algorithm removes BOS from the priority queue; our estimate of 0 for reaching Boston is optimal
(we mark this in these notes with [X], meaning we won’t have to revisit BOS). Now, for each of Boston’s
neighbors (HAR and PVD) we check to see if we can do better than the current estimate. Since the current
estimates are both infinity, and Boston has finite-cost edges to both cities, we can improve both estimates.

1. [BOS:0 [X], PVD:30, HAR:300, ITH:inf, NYC:inf, DC:inf]

Now the algorithm removes PVD: 30 is the optimal path length from Boston to Providence. We can
improve estimates for 2 of Providence’s neighbors: Hartford and New York City. Both now equal the optimal
cost to reach Providence (30) plus the length of the direct edge from Providence (50 and 250 respectively):

2. [BOS:0 [X], PVD:30 [X], HAR:80, ITH:inf, NYC:280, DC:inf]

The algorithm continues until it runs out of nodes on the priority queue, updating estimates as follows:

3. [BOS:0 [X], PVD:30 [X], HAR:80 [X], ITH:90, NYC:100, DC:inf]

4. [BOS:0 [X], PVD:30 [X], HAR:80 [X], ITH:90 [X], NYC:100, DC:291]

5. [BOS:0 [X], PVD:30 [X], HAR:80 [X], ITH:90 [X], NYC:100 [X], DC:291

6. [BOS:0 [X], PVD:30 [X], HAR:80 [X], ITH:90 [X], NYC:100 [X], DC:291[X]

Notice that this algorithm actually gives us the cost of the shortest route between Boston (the starting
vertex) and every other vertex in the graph, not just a specific one in question.

2.1 Pseudocode

Along with maintaining the priority queue, we also want to maintain the same cameFrom HashMap that
we discussed for DFS, so that we can backtrack to the source from any destination. The way we update
cameFrom is by changing the entry for a city every time we find a more optimal route to that city. Assuming
V is the collection of vertices:
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toCheckQueue = V (prioritized on routeDist)
cameFrom = empty map

for v in V:
v.routeDist = inf

source.routeDist = 0

while toCheckQueue is not empty:
checkingV = toCheckQueue.removeMin()
for neighbor in checkingV’s neighbors:

if checkingV.routeDist + cost(checkingV, neighbor) < neighbor.routeDist:
neighbor.routeDist = checkingV.routeDist + cost(checkingV, neighbor)
cameFrom.add(neighbor -> checkingV)
toCheckQueue.decreaseValue(neighbor)

backtrack from dest to source through cameFrom

2.2 Justification

Why is it that we do not have to revisit a vertex after removing it from the priority queue? The idea is that,
at the time we remove it from the queue, we have computed the cost of the optimal path to that vertex
from the starting vertex. We can reason about this by contradiction: if there existed a better path that we
could compute to that vertex after we had already removed it, that path would have to go through a vertex
with a shorter distance to the source than it. But no such vertex exists in the queue, because we remove
vertices from the queue in order of shortest/cheapest. Thus, we ensure that Dijkstra’s algorithm computes
the optimal paths. Mathematically rigorous formal proofs of this idea exist and have been used to prove
Dijkstra’s algorithm correct.
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