
Sequence of Stack Frames for
Explaining Banking Exceptions

CS200
Kathi Fisler

This demonstration accompanies the
BankingService example.

It starts from the point when we decided to
throw an exception rather than return null when

a named customer is not found.

The lecture notes provide context for the starting
point of these slides

loginScreen()

The Stack

The Current Method

public void loginScreen() {
// prompt for name and password
System.out.println("Welcome …”);
System.out.print("Enter username: ");
String username = keyboard.next();
System.out.print("Enter password: ");
String password = keyboard.next();
try {

controller.login(username,password);
System.out.println("Login success");

} catch (CustNotFoundException e) {
System.out.println(”Try Again");
this.loginScreen();

}
}

As the user is about to type in their password
(having already typed their username)

loginScreen()

The Stack

The Current Method

public void loginScreen() {
// prompt for name and password
System.out.println("Welcome …”);
System.out.print("Enter username: ");
String username = keyboard.next();
System.out.print("Enter password: ");
String password = keyboard.next();
try {

controller.login(username,password);
System.out.println("Login success");

} catch (CustNotFoundException e) {
System.out.println(”Try Again");
this.loginScreen();

}
}

Java reads the typed-in password

loginScreen()

The Stack

The Current Method

public void loginScreen() {
// prompt for name and password
System.out.println("Welcome …”);
System.out.print("Enter username: ");
String username = keyboard.next();
System.out.print("Enter password: ");
String password = keyboard.next();
try {

controller.login(username,password);
System.out.println("Login success");

} catch (CustNotFoundException e) {
System.out.println(”Try Again");
this.loginScreen();

}
}

Java reads sends the username and password
to the login method in the BankingService
class. Java puts a little marker on the stack to
indicate that we are in a try block.

loginScreen()

The Stack

The Current Method

public void login(String custname,
String withPwd) {

Customer cust =
customers.findCustomer(custname);

if (!cust.checkPwd(withPwd)) {
...

}

We record on the stack that we are now in a
call to login, and the login code is the current
method. The code arrow is at the top of login.
We are about to call findCustomer.

login()

Note this call to checkPwd after the
arrow. If findCustomer throws an

exception, this entire if will be skipped

loginScreen()

The Stack

The Current Method

public Customer findCustomer(String name)
{

for (Customer cust:customers) {
if (cust.nameMatches(name))

return cust;
}
throw new CustNotFoundException(name);

}

We record on the stack that we are now in a
call to findCustomer, which becomes the
current method. The arrow is at the start of
the for loop to check the customers.

login(“K”,12)

findCustomer(“K”)

loginScreen()

The Stack

The Current Method

public Customer findCustomer(String name)
{

for (Customer cust:customers) {
if (cust.nameMatches(name))

return cust;
}
throw new CustNotFoundException(name);

}

Fast forward – we didn’t find the customer, and
the arrow is at the point of the exception. Java
“throws” the exception.

login(“K”,12)

findCustomer(“K”)

loginScreen()

The Stack

The Current MethodJava now searches back through the stack for
the try marker, ignoring the other method calls
that were waiting to finish (this is where the
pending call to tryLogin gets skipped). The
arrow moves to the start of the catch block.

login(“K”,12)

findCustomer(“K”)

public void loginScreen() {
// prompt for name and password
System.out.println("Welcome …”);
System.out.print("Enter username: ");
String username = keyboard.next();
System.out.print("Enter password: ");
String password = keyboard.next();
try {

controller.login(username,password);
System.out.println("Login success");

} catch (CustNotFoundException e) {
System.out.println(”Try Again");
this.loginScreen();

}
}

loginScreen()

The Stack

The Current Method
The skipped-over methods are removed from
the stack, and Java continues running the code
within the try block. The marker comes off
because we have finished try part of the block

public void loginScreen() {
// prompt for name and password
System.out.println("Welcome …”);
System.out.print("Enter username: ");
String username = keyboard.next();
System.out.print("Enter password: ");
String password = keyboard.next();
try {

controller.login(username,password);
System.out.println("Login success");

} catch (CustNotFoundException e) {
System.out.println(”Try Again");
this.loginScreen();

}
}

loginScreen()

The Stack

The Current Method

The arrow advances to the new call to loginScreen, which now goes on the stack, and
the arrow starts again at the top of the loginScreen method. When we get to the try
statement, a new marker will go on the stack on the upper loginScreen call.

public void loginScreen() {
// prompt for name and password
System.out.println("Welcome …”);
System.out.print("Enter username: ");
String username = keyboard.next();
System.out.print("Enter password: ");
String password = keyboard.next();
try {

controller.login(username,password);
System.out.println("Login success");

} catch (CustNotFoundException e) {
System.out.println(”Try Again");
this.loginScreen();

}
}

loginScreen()

