
BFS DFS Dijkstra MST (Prim/Kruskal)

Short description Traverse a graph 
to find a path 
between a start 
vertex and an end 
vertex
(searches in 
"levels")

Traverse a graph to 
find a path 
between a start 
vertex and an end 
vertex
(searches by going 
down a path)

Find the shortest 
cost path between a 
start vertex and all 
vertices in the 
graph

Given a graph, find 
a minimum 
spanning tree on it 
(a connected tree 
that has all of the 
vertices of the 
graph, with the 
lowest possible sum 
of edge weights)

Works on unweighted graph? yes yes no no

Works on weighted graph? yes (but weight 
doesn't matter)

yes (but weight 
doesn't matter)

yes yes

Works on directed graph? yes yes yes no (for the way we 
discussed in class)

Works on undirected graph? yes yes yes yes

Data structure(s) needed? a set to keep track 
of visited vertices

a queue (FIFO) to 
keep track of the 
next vertices to 
check

backtrack: dict 
from a vertex to 
the vertex it came 
from

a set to keep track 
of visited vertices

a stack (LIFO) to 
keep track of the 
next vertices to 
check

backtrack: dict 
from a vertex to 
the vertex it came 
from

a priority queue 
that compares 
vertices by the 
current known 
lowest cost route
(requires 
comparator that is 
able to use a 
mapping from 
vertices to route 
costs)

backtrack: dict from 
a vertex to the 
vertex it came from

some way to store 
the resulting tree 
(pick a graph 
representation)

some way of 
keeping track of the 
next edge we want 
to consider (e.g. 
sorted list of edges 
for Kruskal)

disjoint sets (to help 
us quickly compute 
whether an edge will 
introduce a cycle or 
not)

Features/applications find the shortest-
length path 
between two 
vertices

will give you back a 
path between two 
vertices (not 
necessarily 
shortest)

typically uses less 
memory than BFS

finding cycles

we also saw it used 
in garbage 
collection

finding shortest-
cost paths

finding lowest-cost 
spanning trees

(Spring 2022 exam 
question on 
difference between 
MST algos and 
shortest-cost path)

Using Graph Algorithms
Thursday, December 15, 2022 11:49 AM



Difference between PQ and sorted list:
PQ has 3 main operations: getMin (O(1) time), removeMin (logN), and insert (logN)

To translate to a sorted list, N * logN (remove each elt)
Need (N-1) removes to get N-th smallest elt

Sorted list, insertion takes O(N) (in ArrayList or LinkedList, but for different reasons):
get(i) will get N-th smallest element (O(1) for ArrayList, O(N) for LinkedList)

Thursday, December 15, 2022 2:22 PM



For array-based implementation of heaps, we want to make sure 
they are as complete as possible (all levels completely full except 
bottom level, which is filled out left-to-right with no holes)

Can easily find next open spot to insert in (leftmost leaf) 
because it will be the first available spot in the array

-

Guaranteed to have a balanced heap, so sift up/down is logN-

Procedure for insertion: put new 
element in leftmost leaf
Sift up as needed (until parent is 
larger or we reach the top)
Note that because sift up swaps two 
existing elements, this maintains the 
completeness of the heap

Bonus: procedure for removeMax:
temporarily move the leftmost leaf into root (because we 
will create a hole that might violate completeness -- see 
red example
Sift down as needed (until both children are smaller)

Both insert and removeMax are logN for a balanced/complete heap 
because the number of swaps in sift up/down is at most the height of 
the heap

Heaps -- 2019 Q1
Thursday, December 15, 2022 12:34 PM



This question is checking if you can recognize that the last element in the array may not necessarily be the 
smallest element in the whole heap (look at the example above after we insert 83: 68 becomes the last 
element in the array, even though 15 is the smallest element). This is because the heap has a partial 
ordering that helps us optimize insert and removeMax, but is not fully sorted.




