Using Graph Algorithms

Thursday, December 15, 2022

11:49 AM

BFS DFS Dijkstra MST (Prim/Kruskal)
Short description Traverse a graph | Traverse a graph to Find the shortest Given a graph, find
to find a path find a path cost path between aja minimum

between a start
vertex and an end

between a start
vertex and an end

start vertex and all
vertices in the

spanning tree on it
(a connected tree

vertex vertex graph that has all of the
(searches in (searches by going vertices of the
"levels") down a path) graph, with the
lowest possible sum
of edge weights)
Works on unweighted graph? yes yes no no
Works on weighted graph? yes (but weight yes (but weight yes yes
doesn't matter) doesn't matter)
Works on directed graph? yes yes yes no (for the way we
discussed in class)
Works on undirected graph? |yes yes yes yes

Data structure(s) needed?

a set to keep track
of visited vertices

a queue (FIFO) to
keep track of the
next vertices to
check

backtrack: dict
from a vertex to
the vertex it came
from

a set to keep track
of visited vertices

a stack (LIFO) to
keep track of the
next vertices to
check

backtrack: dict
from a vertex to
the vertex it came
from

a priority queue
that compares
vertices by the
current known
lowest cost route
(requires
comparator that is
able to use a
mapping from
vertices to route
costs)

backtrack: dict from
a vertex to the
vertex it came from

some way to store
the resulting tree
(pick a graph
representation)

some way of
keeping track of the
next edge we want
to consider (e.g.
sorted list of edges
for Kruskal)

disjoint sets (to help
us quickly compute
whether an edge will
introduce a cycle or
not)

Features/applications

find the shortest-
length path
between two
vertices

will give you back a
path between two
vertices (not
necessarily
shortest)

typically uses less
memory than BFS

finding cycles
we also saw it used

in garbage
collection

finding shortest-
cost paths

finding lowest-cost
spanning trees

(Spring 2022 exam
question on
difference between
MST algos and
shortest-cost path)

Thursday, December 15, 2022 2:22PM

Difference between PQ and sorted list:

PQ has 3 main operations: getMin (O(1) time), removeMin (logN), and insert (logN)
To translate to a sorted list, N * logN (remove each elt)
Need (N-1) removes to get N-th smallest elt

Sorted list, insertion takes O(N) (in ArrayList or LinkedList, but for different reasons):
get(i) will get N-th smallest element (O(1) for ArrayList, O(N) for LinkedList)

Heaps -- 2019 Q1

Thursday, December 15, 2022 12:34 PM

2. (8 points) We want to insert object (Q, 83) into the specific heap shown above. On the

copy of the array below, number the array positions that this new object occupies in order

during insertion according to the sift-up operation covered in class and homework. Put your

numberings under the array. As an example, if an element was in index 2 then 3 then 0 (in an

array of letters), your answer should look like:
For array-based implementation of heaps, we want to make sure
they are as complete as possible (all levels completely full except
[a[blc]d]e] bottom level, which is filled out left-to-right with no holes)

3 1 2 - Can easily find next open spot to insert in (leftmost leaf)
because it will be the first available spot in the array
- Guaranteed to have a balanced heap, so sift up/down is logN

Your answer:

[(E,95) [(B,75) | (R,90) [(C,68) [(A,32) [(L,22) [(P,54) [(S, 15) | | |

: “as ‘
VAN
15 A0
Ve \ /
=Y
%% 31U 21 ©
7 \ o

‘% *. Procedur_e for insertion: put new

@ robu\ . element in leftmost leaf

Sift up as needed (until parent is
Q larger or we reach the top)
q Note that because sift up swaps two
=~ existing elements, this maintains the

/
/ %S \ /q O:Ompleteness of the heap
5 L 1T g4
7 D
19 6%

Bonus: procedure for removeMax:

temporarily move the leftmost leaf into root (because we
will create a hole that might violate completeness -- see
red example

Sift down as needed (until both children are smaller)

Both insert and removeMax are logN for a balanced/complete heap
because the number of swaps in sift up/down is at most the height of
the heap

(6 points) The game developer decides to only store the top 20 scores in the heap. Once the
heap has 20 elements, each new score is compared to the current lowest score in the heap. If
the new score is higher than the lowest score in the heap, the lowest score is removed and the
new score is added. Otherwise the heap is unchanged.

The developer suggests doing this by comparing the new score to the one in the last-occupied
array cell, putting the new score in the last cell to kick out the previous low score if needed,
then sifting the new score into place.

Does the proposed approach maintain the top 20 scores for the game as a valid max heap?
Explain why or why not.

This question is checking if you can recognize that the last element in the array may not necessarily be the
smallest element in the whole heap (look at the example above after we insert 83: 68 becomes the last
element in the array, even though 15 is the smallest element). This is because the heap has a partial
ordering that helps us optimize insert and removeMax, but is not fully sorted.

DP -- 2019 Q3

Thursday, December 15, 2022 12:29 PM

You want to group equally-sized items into boxes of different sizes while using as few boxes as
possible. Imagine that you have 10 items and a supply of boxes, each of which can hold 1, 5, or 7
items. You could put the 10 items in ten boxes of size 1, two boxes of size 5, or one box of size 7
and three boxes of size 1. The two-box solution uses the fewest boxes.

Here's a recursive program that computes the answer, assuming an unlimited supply of boxes of
each size and inclusion of boxes of size 1:

/o
boxes needed to hold a number

in the boxes. This version assumes
size 1 (which simplifies the code).
unlimited supply of boxes of

Determines the minimum number of

of items with no wasted space
that there is always a box cof

This also assumes an each size.

* ok k. A ®

boxes

* @param numItems: how many items to pack into

* @param boxSizes: the sizes of boxes available
+ @return: the minimum number of boxes required
def boxCount (numItems: Int, boxSizes: List[Int]): Int = {
if (numItems <= 0)
0
else
1 + (boxSizes.map(bSize => boxCount (numItems - bSize, boxSizes))).min

1. (7 points) Assuming there is always a box size of 1, what’s the worst-case number of calls that
will be made to boxCount in terms of the number n of items that need to be packed and the

number s of different box sizes?
w: 10 Wewo B \eok 4\“5(, lf%—")

ot Cewring,

TN ¢
¥

\

o

o)
1D loaels (e
3 HTn ¢ ko< codh ™

To understand the recursive solution: say you
have 10 items. You have to make a choice for the
first box you will use.
- If you use a box of size 1, you have put away
1 item, so now you need to solve the problem
for 9 items.
- If you use a box of size 5, you have put away
5 items, so now you need to solve the
problem for 5 items
- If you use a box of size 7, you have put away
7 items, so now you need to solve the
problem for 3 items
So the minimum # of boxes you need is 1 (for
the box you just used) + the minimum answer for
the problem of 9, 5, or 3 items

(&&M

\0
n PZ) (,t:nnﬁQ\""‘kwr'b

Note the repeated computations in the expansion of
the recursive calls: this is a good example of when we
might want to use dynamic programming (to store the
results of repeated computations that are being used
for larger computations!)

ve this instead, and sets up an array with one
cell for ea(h value up to the numher of items. Each cell contains the number of boxes needed to
pack the number of items for that index. For 0 items, this ar rdy contains (boxes. For our earlier
example of 10 items in boxes of sizes 1, § initial array looks like:

2 5‘\678910

1
I0 123 *\III?.III L[]

2. (5 points) How should you compute Yil? contents of cell theArray[8] based on the contents of
other (specific) cells in theirray, given boxes of sizes 1, 5, and 77 Write the formula/expression
you would use for index 8 in particular. Use code-like notation, but syntax doesn’t matter if
your meaning is clear.

theArray =

4w (WQ’»‘WDH-S e NALBY Mﬁ“”t’)[ﬂ)

%~\ g% ¥ Jf

