


Tree: hierarchical data structure
Each node has zero or more subtrees and is either the root 
has exactly one parent

Binary trees: Each node has at most two subtrees

Balanced: is the height of the tree roughly log N (N is the 
number of nodes/elts in the tree)

AVL balance condition: for every node, the height of the 
left subtree differs from the height of the right subtree 
by at most 1

Constraints on the data a tree holds

Binary Search Tree: for every node, every elt. in 
the left subtree is smaller than the node and every 
elt. in the right subtree is bigger than the node

(hasElt is logN for a balanced BST)

max-heap: the root is larger than every other elt
in the tree, and every subtree is also a max-heap

Embedding binary trees in arrays:
root is at elt 0
for every elt, if it is at index i, its left child will be at index 2*i + 1 
and its right child will be at index 2*i + 2

"storing the tree top-to-bottom, left-to-right, leaving holes for 
empty spots)

Different kinds of trees
Wednesday, December 14, 2022 1:55 PM



Spring 2022 Exam, Heaps question
Wednesday, December 14, 2022 3:46 PM



2021 final Q3.1-3.2
Wednesday, December 14, 2022 2:06 PM



min heap or max heap?
balanced or imbalanced?
(more free to put elements below other elements, 
as long as they follow the heap property)

2021 final Q3.3
Wednesday, December 14, 2022 2:06 PM







We did not have time to go over this in the review session, but here are some ways we have seen to represent 
graphs and their tradeoffs:

Example of very basic representation: a hashmap from Strings (representing vertex names) to lists or sets of 
Strings (the neighboring vertices)

E.g.
{"A": ["B", "C"],
"B": [],
"C": ["A"]}

Pros: simple, easy to find neighbors
Cons: doesn't work for weighted graphs, no data associated with vertices except for name, not very "OO-
friendly" (vertices cannot perform their own operations because there is no vertex class)

Designs that contain a Vertex class:
Vertex class contains a list/set of neighboring vertices-
(e.g. object for vertex "A" above would contain a list/set with the object for vertex "B" as the element)
Cons: doesn't work for weighted graphs, no easy way to ask if Vertex has a neighbor of a certain name
Vertex class contains a dictionary from neighboring vertex names to objects-
(e.g. object for vertex "A" above would contain a dictionary that maps from "B" to the object for vertex "B")
Cons: doesn't work for weighted graphs, coding it up takes a little more awareness of how underlying data 
should look
Vertex class contains a list/set of outgoing Edge objects, where each Edge object may have a weight and 
fields for the start and end vertices

-

Cons: depending on the implementation, may not need this level of complexity
We might also have a Graph class that holds vertex objects. We would choose our data structures based on the 
operations we want to perform on the graph (for example, for TravelPlanner, you needed to have a way to 
associate a city name with a vertex object, so you likely chose to keep a dictionary from city names to vertices).

There are other variations here (for example, instead of having an edge object, you could maintain a dictionary 
from neighbor vertices to edge weights inside of the edge class). It all boils down to the operations you want to 
do on the graph (easily store edge weights? Find neighbors quickly? Look up a vertex with a given name?).

Note that we put "list/set" above - the choice of which one depends on what operations you want to do on the 
graph. For example, if you wanted a fast Vertex method like "hasNeighbor", you would probably choose a set for 
its constant-time lookup.

Graph representations
Wednesday, December 14, 2022 1:56 PM


