
h = 1

h = m - 1

h = m

h = m + 1

.

.

.

h = 2

h = 3
AVL (Adelson-Velsky and Landis)
tree: where the height of the right
child and the height of the left
child for every node differ by at
most 1

h = 1

h = m - 1

h = m

h = m + 1

.

.

.

h = 2

h = 3

A

h = 1

h = m - 1

h = m

h = m + 1

.

.

.

h = 2

h = 3

A

new elt

h = 1

h = m - 1

h = m

h = m + 1

.

.

.

h = 2

h = 3

A A

B

Got added
here

Or here

h = 1

h = m - 1

h = m

h = m + 1

.

.

.

h = 2

h = 3

A

< A

B

> A
< B

> B

A

B

> A
< B

h = 1

h = m - 1

h = m

h = m + 1

.

.

.

h = 2

h = 3

A

< A

B

> A
< B

> B

A

B

> A
< B

rotate_left(old_root):
returns a new root to the tree
a = old_root
b = old_root.right
green = b.left
a.right = green
b.left = a
return b

or just:
rotate_left(old_root):
new_root = old_root.right
old_root.right = new_root.left
new_root.left = old_root
return new_root

(exercise: write rotate_right)

h = 1

h = m - 1

h = m

h = m + 1

.

.

.

h = 2

h = 3

A A

B

Got added
here

Or here

h = 1

h = m - 1

h = m

h = m + 1

.

.

.

h = 2

h = 3

A

< A

B

> B> A
< B

A

< A

B

> B

> A
< B

h = 1

h = m - 1

h = m

h = m + 1

.

.

.

h = 2

h = 3

A

B

A

B

C

Added
here Or here

h = 1

h = m - 1

h = m

h = m + 1

.

.

.

h = 2

h = 3

A

< A

B

> B

C

> A
< B
< C

here

>A
< B
> C

Or here

A

< A

B

> B

C

> A
< B
< C

here

>A
< B
> C

Or here

h = 1

h = m - 1

h = m

h = m + 1

.

.

.

h = 2

h = 3

A

< A

B

> B

C

> A
< B
< C

here

>A
< B
> C

Or here

A

< A

B

> B

C

> A
< B
< C

here

>A
< B
> C

Or here

h = 1

h = m - 1

h = m

h = m + 1

.

.

.

h = 2

h = 3

A

B

Got added
here

Or hereroot.right = rotate_right(root.right)
then
root = rotate_left(root)

root = rotate_left(root)

