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AVL (Adelson-Velsky and Landis)
tree: where the height of the right 
child and the height of the left 
child for every node differ by at 
most 1
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rotate_left(old_root):
# returns a new root to the tree
a = old_root
b = old_root.right
green = b.left
a.right = green
b.left = a
return b

or just:
rotate_left(old_root):
new_root = old_root.right
old_root.right = new_root.left
new_root.left = old_root
return new_root

(exercise: write rotate_right)
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Or hereroot.right = rotate_right(root.right)
then
root = rotate_left(root)

root = rotate_left(root)


