
Back to PriorityQueues -- how to implement a PQ?
Need 3 operations: a way to insert elts

a way to get the max elt (without deleting it)
a way to delete the max elt

(for the purposes of this lecture, we are concerned with max only; this still works if we talk about the min)

Data structures we've seen so far: Linked Lists, Arrays/ArrayLists, Trees, HashMaps/Dicts, HashSets/sets,
own class out of these (e.g. different ways to represent graphs)

Want to write class PriorityQueue w/ 3 operations above

Set -- unique elements good, but how to associate priority?

HashMap/Dict -- map an elt. to its priority (keys = elts, values = priorities)
let us get an item's priority quickly, but not get/delete max elt quickly

have "priority levels" to map to elts (keys = priorities, values = elts)
if we know max priority level, can quickly get the max elt
BUT what about the next max? and the next?

LinkedList -- sorted by priority
insert - O(N) time
getting max - O(1)
deleting max - O(1)

Trees?? How to manage priority?
insert - O(logN) for balanced tree

O(N) for unbalanced tree

getting/deleting max --
O(logN) for balanced,
O(N) for unbalanced

Note on terminology:
Trees are just hierarchical data
structures (each node has
subtrees -- two subtrees for a
binary tree)
BSTs (binary search trees) are
binary trees with the ordering
property (everything in left
subtree is smaller than the root
and everything in the right
subtree is bigger than the root)

All BSTs are binary trees, not
all binary trees are BSTs

Data structure possibilities for PQs
Monday, November 14, 2022 1:04 PM

