Data structure possibilities for PQs

Monday, November 14, 2022 1:04 PM

Back to PriorityQueues -- how to implement a PQ?
Need 3 operations: a way to insert elts

a way to get the max elt (without deleting it)

a way to delete the max elt

(for the purposes of this lecture, we are concerned with max only; this still works if we talk about the min)

Data structures we've seen so far: Linked Lists, Arrays/ArraylLists, Trees, HashMaps/Dicts, HashSets/sets,

own class out of these (e.g. different ways to represent graphs)

Want to write class PriorityQueue w/ 3 operations above

Set -- unique elements good, but how to associate priority?

HashMap/Dict -- map an elt. to its priority (keys = elts, values = priorities)

let us get an item's priority quickly, but not get/delete max elt quickly

have "priority levels" to map to elts (keys = priorities, values = elts)

if we know max priority level, can quickly get the max elt
BUT what about the next max? and the next?

LinkedList -- sorted by priority
insert - O(N) time
getting max - O(1)
deleting max - O(1)

Trees?? How to manage priority?
insert - O(logN) for balanced tree
O(N) for unbalanced tree

getting/deleting max -- / S\

O(logN) for balanced, ’
O(N) for unbalanced

Note on terminology:

Trees are just hierarchical data
structures (each node has
subtrees -- two subtrees for a
binary tree)

BSTs (binary search trees) are
binary trees with the ordering
property (everything in left
subtree is smaller than the root
and everything in the right
subtree is bigger than the root)

All BSTs are binary trees, not
all binary trees are BSTs

Heaps

Thursday, Movember 17, 2022 11:03 AM

What if relax the rules a bit?
What if we keep the max item at the top?
Let's do this with the elts [1, 2, 5, 7, 9]

W a\go wnt o
/ N L= leep Yve semnd lonroead

S + v dacey
7 N\
A (binary max) HEAP is a binary tree with the max elt at the top, and which obeys the property that each

subtree is also a heap

For a given set of elts, there are multiple valid heaps

o a.
]’ S q‘-S\ J’ S

/ / l\
\ |\ 7

Q
% Nt m\]&'. N\ 1
Get max elt - constant time

\ Remove max elt - ??7??
\ Insert - ???

When we remove an elt, we create a "hole" where that elt used to be. We want

to swap in the second-largest elt, and keep going until we reach a leaf

remode A iy

S/O\ ~3 /®$?gs)

7 \ 5\ O
1 \ L/ \ \ﬁ

Pseudocode:

get_max() -> int:
return the root of the heap

remove_max():
childl = left_subheap.get _max()
child2 = right_subheap.get_max() L«
if childl > child2: (childl goes in the top spot)
root of this heap = childil
left subheap.remove max() (or remove if leaf)
else:
root of this heap = child2

right_subheap.remove_max() (or remove if leaf)

Runtime: O(logN) for a balanced heap
O(N) for an unbalanced heap

\
\

What about insertion?

For a BALANCED HEAP:
get max: 0O(1)
delete max: O(logN)
insert: 0(logN)

Unbalanced:

get _max: 0(1)
delete max: O(N)
insert: O(N)

q 5 q Closing questions:
7 o S~ P, \ / S 8 - how to find empty spot for
8 :I’ insertion?

| / ’L’ ‘} i.‘ - how to keep heap balanced so that
) / we can guarantee logN runtime?

