Longest increasing subsequence with dynamic programming (Brown CS

200, Spring 2022, Milda Zizyte)

Wednesday, April 6, 2022 1:29 PM

Another example of a problem that can be solved with Dynamic Programming is longest increasing subsequence: find
the length of the longest increasing subsequence of a list

Approach: write down examples of what the answers would look like when we start with each element of the list.
Since the longest increasing sequence will have to start with one of those elements, the maximum such length will be

our answer.
A G c n 3 r o
d I 3 7| 4 2 5}iis starting wi 3: @ %Q‘ monl
2
g | 7 4] 7] 5}iis starting v 7: 1
5 | 4 2| 5} is starting wi 4: ’?_
5
7 | 7] 5)is starting wr 2.~ 77
5
2 E lis starting w/ 5: '\

Note: why is 1 the answer for the LIS starting w/ 7? Because the sub-problem we are solving is to find the
subsequence that starts with the element in question. This way of framing the problem will let us use the answers for
the smaller sub-problems to answer the bigger sub-problems more efficiently!

How do we populate the table? One way to think about this is recursively: if we are considering the length of the longest
subsequence starting with the element at index start_index, and we consider every possible_next_index after start index,
the answer for the longest increasing sequence starting with the element at start_index will be (in pseudocode)

1 i s(start_index, input_lst):
if start_index == len(input_1lst) - 1:
return 1
else:
return 1 + max(l_i_s(possible_next_index, input_lst))
for all possible_next_index > start_index with
input_lst[possible_next_index] > start_index

So, the computation for index 3 of the list would look like:
1 i s(3, input 1st) = 1 + max(1l i s(4, input 1st)) (because 4 > 3 and input_Ist[4] > input_Ist[3] (5 > 2)

?__ 1 (because len(input_Ist) is 4)

The computation for index 1 of the list would look like:
1 i s(1, input_1st) = 1 + max(nothing) (because there are no elements larger than input_Ist{1] (7) in the rest of
the list) =1

The computation for index 0 of the list would look like:
1 i s(@, input_1st) = 1 + max(1_i_s(1, input_1st), 1 i s(2, input_1st), 1 i s(4, input_lst))=3

N
1 1 i s(4, input lst 51_ g JV”“%
+ max(1l_ i _s(4, input 1st) (DW\FUW§
i

1+ max(nothing):‘\

1
We notice that that last computation has some redundancy when implemented recursively. Instead, we
recognize that, if we store the result of these computations, from the largest starting index (smallest sub-list)
to the smallest, then we could re-use them to do the computations for the smaller starting indices:

A B c D E F (

4
AR
4

23
oy (o)

o I
-

(longest_seq_so_far) back-to-front:
QO ORY SRl v g

def 1 i s(1st :

nun

"list[int]™) -> int:
e length of the LIS in lst"""

longest seq so far[start index] = ..

return max(longest seq_so_far)

Then, we fill in the inner computation:

longest_seq so_far = [@] * len(lst) Lofﬂb
for start_index in range(len(lst) - 1, -1, -1):

WA
len _of max_seq from start index = 1 2 w Cm*b
for possible next index in range(start_index + 1, len(lst)): olX\s AN <£
if lst[possible next index] > lst[start index]: \

if longest seq so far[possible next index] + 1 > len of max_ seq from start index: (Y= vv&kb&
len _of max seq from start index = longest seq so far[possible next index] + 1 Y
longest seq so_far[start_index] = len of max seq_from_ start index J

return max(longest seq_so_far)

We need the inner-most if statement to compute the max, by going through each possible_next_index and examining whether it
will help us find the maximum possible subsequence starting with start_index. We could have equivalently written the code using
list comprehensions:

longest_seq_so_far = [0] * len(lst)

AR W“ o \\,,O\N‘(t)\ NS
for start_index in range(len(lst) - 1, -1, -1): ?Fh

possible_next_indices = [next_index for next_index in range(start_index + 1, len(lst) \50'
if lst[next_index] > lst[start_index]])(VV%) %p \'t)-'" @D

len_of_next_index_sequences = [longest_seq_so_far[next_index] for next_index in p0551ble next_indices]

longest_seq_so_far[start_index] = 1 + max(len_of_next_index_sequences, default = 0)

return max(longest_seq_so_far)

Instead of returning the length of the longest sequence, how would we return the sequence itself? There are two
possible approaches we might take: keeping track of the sequence itself, or keeping track of the indices that got us to
the sequence.

adoL: o A]
wa e (2 (3 v AR

boole: 311 12 T 517)

ﬁ\;& XY I Y M T

g™ yg Jem Yu |4 ek)

(weogti 4 5 3)
1,1\4_L_2.T—
\ \./

\MAS ﬂ*\w(d

of N =\7 ‘

longest_seq_so_far = [0] * len(lst) \\(ﬂ\\'b% ,‘:N“ YJ O® \4\0‘:}" ,‘
KxQ« QN’ (\' N u.)

for start_index in range(len(lst) - 1, -1, 06 QML >\0 \V\b

len_of_max_seq_from_start_index = 1 \IL’
for possible_next_index in range(start_index + 1, len(lst)): ‘»\
if lst[possible_next_index] > lst[start_index]:
if longest_seq_so_far[possible_next_index] + 1 > len_of_max_seq_ fr‘om start_index
len_of_max_seq_from_start_index = longest_seq_so_far[possible_next_index] + 1
longest_seq_so_far[start_index] = len_of_max_seq_from_start_index

W)

How would we insert this into our existing code?

;;:ur‘n E:ﬁ?feét(;? sig‘r;) \oow S(V\“dbv\ v e, \Pbd'é\ for %‘@P\%

Covf\(\ﬁ‘v CM'Sw\M (,'Y\OW‘ Aok 55" < :::LM\
o owng _om n\ wu -
w\»g\{:nbhwi \ﬁ(; S b W QY eadn I

