Kruskal's pseudocode

Wednesday, October 26, 2022 1:11 PM

Notation: (u, v) to denote the edge between u and v

Inputs: E (the collection of edges),
V (the collection of vertices)

sortedE E as a sorted list

A spanning tree on a graph
will always have V - 1
edges

whllethru—-L\ (IV‘ <-- what should this end condition be?

retTree = empty Graph

u,v) = sortedE.removeFirst 5
) O What is a cycle?

if ! pathExists(v, u): (if there's a path from v to u, and we add the edge

(u,v) to the spanning tree, then we have built a path A non-empty path
from v back to itself, aka a cycle) (sequence of edges)
add (u, v) to retTree from a vertex back to
itself

return retTree \,) i

Kruskal's initial runtime

Friday, October 28, 2022 2:11 PM

Inputs: E (the collection of edges),
V (the collection of vertices)

sortedE = E as a sorted list O <|E\ \,OS\E\\>
retTree = empty Gr‘aphO(\3 e M\'\ \JSLS@)‘

WA
while |retTree.E| < |V| - 1 : !//N\Ab ‘(3 \,E\ Hned
\) ¥o e quvier
(u,v) = sorte .re?noveFirst() ()(,\3

OFS
if ! pathExists(v, u): OC\E\J‘\\”\ 6@5 of

add (u, v) to retTree D(A\ G(I‘E\\%»B\ 4 \B\‘ Q‘E‘\ ,‘,\N\»»

return retTree

Optimizing cycle finding

Friday, October 28, 2022 1:48 PM

See notes for detailed, written-out
example of optimizing the union/find
operations and using them on this graph

Initialize every vertex to be in its own
unique connected group
while |retTree.E| < |V|

(u,v) = sortedE.removeFirst()

if find(u) != find(v):
add (u, v) to retTree
union(u, v)

return retTree

A "connected group" of vertices is a
collection of edges and vertices that are
connected (i.e. all have paths to each
other)

(u, v) introduces a cycle into the graph
if and only if u and v are in the same
connected group

union(u, v): combines the connected group
that u is in and that v is in into one
connected group

find(u): gives back the name of the
connected group that u is in

