BFS/DFS runtime At worst, |V| times through this while
Sunday, October 23, 2022 E:s?ﬁhile (I tOChECk = lsEmEt::gz 2 { 100p
Vertex<T> checkingVertex = toCheck.removelast(); // removeFirst() for BFS

0(1\3 if (dest.equals(checkingVertex)) {
return true;

A vertex may have up

} d)‘h to |V| - 1 neighbors \
for (Vertex<T> neighbor : checkingVertex. . getOutgoing()). { 0 O
if (!visited.contains(neighbor)) {

visited.3dd(neighbor); O('\)
toCheck.addLast(neighbor);

} } } N\\\I\"' OLN?) <- initial estimate

BUT: vertices aren't the only thing that
contributes to the runtime on graph algorithms.
The two graphs shown here have the same number of
vertices, but the one on the right has more edges
and the algorithm will take longer to run. Hence,
we measure the runtime of graphs according to
both:

|V| (the size of the set of vertices)
|E| (the size of the set of edges)

while (! toCheck.isEmpty()) {
Vertex<T> checkingVertex = toCheck.removelast(); // removeFirst() for BFS
if (dest.equals(checkingVertex)) { If we consider these operation across all
return true; iterations of the while loop, they're .
} going to contribute O(|V|) to the runtime
for (Vertex<T> neighbor : checkingVertex.getOutgoing()) {
if (!visited.contains(neighbor)) {
visited.add(neighbor);
toCheck.addLast(neighbor); What runtime will these lines (highlighted

} in blue) contribute across all iterations »
) of the while loop? -> O(|E|) Final runtime: O(\“\-I: \E
¥

Dijkstra runtime

Monday, October 24, 2022 1:06 PM

toCheckQueue = V (prioritized on r‘outeDist)go(‘“b

cameFrom = empty map

for v in V:
v.routeDist = inf 3 d,\\'\»
e

source.routeDist =
W\ wed

while toCheckQueue is not empty: \\‘\3
checkingV = toCheckQueue.removeMin() 0('E)

for neighbor in checkingV’s neighbors:

Mbh WM

if checkingV.routeDist + cost(checkingV, neighbor) < neighbor.routeDist: (X,\S

4 (1 + W\\db\\!* \E\ \05\“0 =

neighbor.routeDist = checkingV.routeDist + cost(checkingV, neighbor) 0(,(5
cameFrom.add(neighbor -> checkingV) 0(1‘)
(with optimized priority queue

toCheckQueue.decreaseValue(neighbor) 0(‘QS\“\ implementation -- see notes)

backtrack from dest to source through cameFrom OL\\I\)

Representing mazes as graphs

Sunday, October 23, 2022 4:54 PM

- T 0-0-0@
T —O~0O

1\

Solving the maze = finding route (DFS or
BFS) from vertex that represents starting
cell to vertex that represents ending cell

Bigger maze comparison

Monday, October 24, 2022 1:02 PM

=Pl

r [
1 213 e sy 30 34& 13\ 120 \l'll

13 \8 ul?ﬁ %Ip 3\ 8L fui 39 “ofne ws |\

(7 L) (A} () m|¢| cofsifun av Jrufie mafws ve
1520 |y Jro]es lG_lls; SOUR us s

M (S (L jo)es)ss s6)sr 53 4% ue

3V Afepfsa 55)31 [ua s wr e 6 no
123 o3 6138 34 38 Rfig 1 fuofios 102 16}

14 5 G % A al [im)w \o‘\lns 106|100
] s a3 |20 ¢1 92] o3] usjaa

| 208137 33 3135 36 97 96 93 4t

Will go down a path until it
reaches a dead end and then
search from last-seen
branching-off point

@ 152 116 JU 16 110 1S 110 s
[\ fod A 2 96 (00104 \o'\l;'a 13)
15|55 \5) BY 1WA IR

7+ 3 |55 53 51 fus U3
M |63 59
N GHLD 30126 38 34 M6 U3 |51 51
3 23126l32 24)wo vz ufez 361
Cal (X 1)
(& &5 Y 251 (A (M

1 ||+|§m
|

Lt \§

239 W i

0

1 153 M

N\ b 7 m\zs\ulm

13 1o 12 3R 45193 141 ¥ 190 Wi dbl

Joo 1t | e)52

»5] BV RY s

21 79] 9 |mafisy 13 |

G

PRysPoz
o] b

REEE
T BERERS)

(2! b‘\hq.
\o \0M 14
1a 1215 1611k

[(+®

Wofi6 [LY fe0 e\ 'Y

2\
7o MY () \ WA 43 4o %I (]
%15 B pshwir]so e v WS \53

5 2|0 y! ﬂEﬂ ege\l 131 13 \9p 15
\ 112 123 10 67 T\ \B5
U G A a a o

| T4 v

1ol 112 (1 M 115 (6 (7 (R \10 W1\ 1Y

Will "fan out" from the

beginning of the maz

e

(tracking many routes at

once)

A
(ghofy N

Prioritizes based on
distance to the end -- turns
out to be fastest for most
mazes

A note on how these mazes were Llabeled: the number represents the timestep when that cell was *added* to the

toCheck stack/queue/priority queue.

Neighbors are checked in the order right, up,
can result in different numberings/traversals for the mazes). For A%*,

Left, down (a different ordering
Manhattan distance is used and ties are

broken by considering the cell that was added to the PQ earlier (has a lLower timestep number). Colors change every

20 steps.

