BFS/DFS runtime At worst, |V| times through this while
Sunday, October 23, 2022 E:s?ﬁhile ( I tOChECk = lsEmEt::gz 2 { 100p
Vertex<T> checkingVertex = toCheck.removelast(); // removeFirst() for BFS

0(1\3 if (dest.equals(checkingVertex)) {
return true;

A vertex may have up

} d)‘h to |V| - 1 neighbors \
for (Vertex<T> neighbor : checkingVertex. . getOutgoing()). { 0 O
if (!visited.contains(neighbor)) {

visited.3dd(neighbor); O('\)
toCheck.addLast(neighbor);

} } } N\\\I\"' OLN?) <- initial estimate

BUT: vertices aren't the only thing that
contributes to the runtime on graph algorithms.
The two graphs shown here have the same number of
vertices, but the one on the right has more edges
and the algorithm will take longer to run. Hence,
we measure the runtime of graphs according to
both:

|V| (the size of the set of vertices)
|E| (the size of the set of edges)

while (! toCheck.isEmpty()) {
Vertex<T> checkingVertex = toCheck.removelast(); // removeFirst() for BFS
if (dest.equals(checkingVertex)) { If we consider these operation across all
return true; iterations of the while loop, they're .
} going to contribute O(|V|) to the runtime
for (Vertex<T> neighbor : checkingVertex.getOutgoing()) {
if (!visited.contains(neighbor)) {
visited.add(neighbor);
toCheck.addLast(neighbor); What runtime will these lines (highlighted

} in blue) contribute across all iterations »
) of the while loop? -> O(|E|) Final runtime: O(\“\-I: \E
¥



Dijkstra runtime

Monday, October 24, 2022 1:06 PM

toCheckQueue = V (prioritized on r‘outeDist)go(‘“b

cameFrom = empty map

for v in V:
v.routeDist = inf 3 d,\\'\»
e

source.routeDist =
W\ wed

while toCheckQueue is not empty: \\‘\3
checkingV = toCheckQueue.removeMin() 0( 'E )

for neighbor in checkingV’s neighbors:

Mbh WM

if checkingV.routeDist + cost(checkingV, neighbor) < neighbor.routeDist: (X,\S

4 (1 + W\\db\\!\* \E\ \05\“0 =

neighbor.routeDist = checkingV.routeDist + cost(checkingV, neighbor) 0(,(5
cameFrom.add(neighbor -> checkingV) 0(1‘)
(with optimized priority queue

toCheckQueue.decreaseValue(neighbor) 0( ‘QS\“\ implementation -- see notes)

backtrack from dest to source through cameFrom OL\\I\)



Representing mazes as graphs
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Solving the maze = finding route (DFS or
BFS) from vertex that represents starting
cell to vertex that represents ending cell



Bigger maze comparison

Monday, October 24, 2022 1:02 PM
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Will go down a path until it
reaches a dead end and then
search from last-seen
branching-off point
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Will "fan out" from the

beginning of the maz
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(tracking many routes at

once)
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Prioritizes based on
distance to the end -- turns
out to be fastest for most
mazes

A note on how these mazes were Llabeled: the number represents the timestep when that cell was *added* to the

toCheck stack/queue/priority queue.

Neighbors are checked in the order right, up,
can result in different numberings/traversals for the mazes). For A%*,

Left, down (a different ordering
Manhattan distance is used and ties are

broken by considering the cell that was added to the PQ earlier (has a lLower timestep number). Colors change every

20 steps.



