
Method calls:
bos.canReach(har)

pvd.canReach(har)
bos.canReach(har)

…

With helper:
bos.canReachHelper(har, {}) -> true

pvd.canReachHelper(har, {bos}) -> false
wos.canReachHelper(har, {bos, pvd}) -> true

har.canReachHelper(har, {bos, pvd, wos}) -> true

If we don't keep track of the 
cities we've already asked 
about, then the loop between 
Boston and Providence may 
result in an infinite recursion

Use canReachHelper to keep a HashSet 
of visited nodes (i.e. nodes that we've 
already called canReachHelper on)

The example on the left uses recursion to "queue up" 
neighbors that we should examine. Instead of using 
recursion, we can use a toCheck list, where we add 
neighbors to check to the end of the list (see written 
notes for a more detailed explanation)

canReach
Wednesday, October 19, 2022 1:17 PM



Step 1: add A to toCheck and visited
Step 2: remove last element (A) from toCheck; add A's 
neighbors to toCheck and visited
Step 3: remove last element (D) from toCheck; add D's neighbor 
to toCheck and visited
Step 4: remove last element (E) from toCheck; add E's unvisited 
neighbor to toCheck and visited
Step 5: remove last element (G) from toCheck (has no 
neighbors)
Step 6: remove last element (C) from toCheck; add C's unvisited 
neighbor to toCheck and visited
Step 7: remove last element (F) from toCheck; we are done 
because F is the destination

BFS/DFS example
Wednesday, October 19, 2022 1:18 PM


