

start: 0
end: 0
eltcount: 0

start: 0
end: 0
eltcount: 0

start: 0
end: 0
eltcount: 0

Consider the following test cases, which result in
the ArrLists to the right:

ArrList L1 = new ArrList(6);
L1.addLast("a");
L1.addLast("b");
L1.addLast("c");

// L1: a b c
assertEquals("b", L1.get(1));

ArrListL2 = new ArrList(6);
L2.addFirst("b");
L2.addFirst("a");
L2.addLast("c");
// L2: a b c
L2.get(1);
assertEquals("b", L2.get(1));

ArrList L3 = new ArrList(6);
L3.addLast("c");
L3.addFirst("b");
L3.addFirst("a");
// L3: a b c
assertEquals("b", L3.get(1));

Note that, even though our underlying array has used different slots, and start and end are different for
each of L1, L2, and L3, the user expects each of the lists to look and behave the same from their
perspective. In class, we saw that the second and third assertions failed, and we used these drawings to
debug our code. We saw that the debugger showed the same theArray/start/end/eltcount that we
expected, which led us to diagnose that our bug was in the get method, which we revised to give back
the (wrapped around) offset from the start of the array:

public String get(int index) {
if ((index >= 0) && (index < this.eltcount)) {

return theArray[(index + this.start) % this.theArray.length];
}
throw new IllegalArgumentException("arrayindex" + index + "outofbounds");

}

debugging addFirst
Monday, October 3, 2022 1:29 PM

