addFirst -- one possible approach

Monday, October 3, 2022

1:29 PM

-WQJPfMua-\U‘ﬁ\\ G What happens if we want to run

end: 7).

eltcount:

Y04 0

"hello"

addFirst("hey")
addFirst("wow") ?

One approach is to resize the array
and copy elements with some offset,
to create space at the beginning

"there"

S o>

"brown"

U\

O

L Yy W W -

Yok g

end:5

eltcount:%ws
SN T BY |

~
~

NI

Ly

Yy NS

"hello"

"there"

"brown"

Note the addition of the start
field, which lets us keep track
of where the beginning of this
list is (because if we resize
with elements at the
beginning, it may not always
be at index 0!)

This approach doesn't seem that
efficient, though, because
resizing is a linear operation and
we still had space in the original
array (just at the "wrong"
indices: 3-5)



< o~ P

Ul

addFirst -- a "circular" approach

Monday, October 3, 2022

1:29 PM

end: 2
eltcount: 3
start: O

"hello"

"there"

"brown"

another approach is to use the space at indices 3-5 by
imagining the list "wraps around" back to 0 -- like we cut the list
out and rolled it into a cylinder:

Then, when we call addFirst("hey"), we would want the
"hey" to come before the first element (i.e. at index 5):

end: 2
eltcount: 3 Y4

start: @'

"hello"

"there"

"brown"

“Y\Ug




coding "circular" addFirst
Tuesday, October 4, 2022 3:26 PM

One way to code this circular case is, for addFirst, to write

public void addFirst(String newItem){
if (this.isFull()){
// assume resize works as intended for now
this.resize(this.theArray.length * 2);

this.addFirst(newItem); wrap this.start around to the last available

} else{ : .
if (lthis.isEmpty()) { md:)_c ofhthe arr.ay (for example, going from 0
if (this.start == @) { L/ to 5 in the previous page)
this.start = this.theArray.length-1;
} else {
this.start = this.start-1; . . . .
; An alternative to this code is to use %, the remainder. Some examples of modulo:
}
} 0%6=0
this.eltcount = this.eltcount+1; 1%6=1
. this.theArray[this.start] = newItem; 6%6=0
Py 12%6=0
¥ \ 15%6=3
\ Note that (x + n) % n ==x % n (for example, 1% 6==7 % 6 == 1)
WNSU WM
(W\m(&fg ();Q_; In math, -1 % 6 =5 (because-1/6=(-1 *6) + 5, so 5 is the remainder).
ok o In our code, we want (0 - 1) % 6 to also equal 5, but Java handles modulo of negative numbers
\_h strangely, so we add this.theArray.length to make sure this.start - 1 % this.theArray.length is
- always non-negative:

MM this.start = (this.start - 1 + this.theArray.length) % this.theArray.length
// mathematically equivalent to (this.start - 1) % this.theArray.length



debugging addFirst

Monday, October 3, 2022 1:29 PM

Consider the following test cases, which result in

the ArrlLists to the right:

ArrList L1 = new ArrList(6);
Ll.addLast("a");
Ll.addLast("b");
L1.addLast("c");

// L1: a b c
assertEquals("b", Ll.get(1));

ArrListL2 = new ArrList(6);
L2.addFirst("b");
L2.addFirst("a");
L2.addLast("c");

// L2: a b c

L2.get(1);

assertEquals("b", L2.get(1));

ArrList L3 = new ArrList(6);
L3.addLast("c");
L3.addFirst("b");
L3.addFirst("a");

// L3: a b c
assertEquals("b", L3.get(1));

L1

start: O
end: X 2

eltcount: @ X 7L 3

O 7 O\o

-

[ 7Y

~
~

C

7

[
3
a4

S

L2

start: 8 5
end: @ )
eltcount: 0423

e
c/\ =

V7

C

o ~N

o

o S

dq

-

l.7

L3

start: 95 ¢
end: 0
eltcount: 42 %

o
O\

1/5

Note that, even though our underlying array has used different slots, and start and end are different for
each of L1, L2, and L3, the user expects each of the lists to look and behave the same from their
perspective. In class, we saw that the second and third assertions failed, and we used these drawings to
debug our code. We saw that the debugger showed the same theArray/start/end/eltcount that we
expected, which led us to diagnose that our bug was in the get method, which we revised to give back
the (wrapped around) offset from the start of the array:

public String get(int index) {
if ((index >= 0) && (index < this.eltcount)) {
return theArray[(index + this.start) % this.theArray.length];
f———— e ———

}

throw new IllegalArgumentException("arrayindex" + index + "outofbounds");




