ArrayLists in memory and code

Tuesday, October 4, 2022

11:21 AM

(s ey \endh 5 2

o3 D

loc 1012 ArrList
end: 0

loc 1013 O null

loc 1014 | null

loc1015 7 null

Q’\‘\‘wurﬁk' Z\ @\,’rwuw\' EL L

loc 1012 ArrList | loc 1012 ArrList
end: 0 end: 1

loc 1013 O “hello” loc 1013 “hello”

loc 1014 « null loc 1014 “there”

loc1015 7 null loc1015 null

public void addLastNoResize(String newItem) {

if (!(isEmpty())) {
this.end = this.end + 1;

}

this.eltcount = this.eltcount + 1;

this.theArray[this.end] =

newltem;

this lets us differentiate between the
case where end = 0 because the list is
empty vs. end = 0 because that's the
last-used slot of the first element in the
list (we'll need this distinction when we
talk about addFirst next time)

Adding to a full ArrList

Tuesday, October 4, 2022

1:35 PM

loc 1012 ArrList
theArray: loc1013
end: 2
eltcount: 3

loc 1013 “hello”

loc 1014 “there”

loc1015 “brown”

Ogen V2

loc 1012 ArrList
theArray: loc
end: 2
eltcount: 3
loc 1013 “hello”
loc 1014 ‘there”
loc1015 “browrr” ' D™

Assume this ArrList is named AL
and was initialized with

AL = new ArrList(3)

Now run AL.addLast(“bear”)

What happens?

Ogvion L

if (!(isEmpty())) {

}

this.end = this.end + 1;

this.eltcount = this.eltcount + 1;

this.theArray[this.end]

newItem;

O gtin Y

public void addLastNoResize(String newItem) {

/

(Why? Because we increment end to 3, and then try to store "bear" in theArray[3] (loc1016), but Java only
gave us up to loc1015 for theArray. Something else may have been put in that memory location after we
initialized theArray, and because Java can't guarantee that it hasn't, it throws an Exception.

loc 1012 ArrList loc 1012 ArrList
theArray: lo theArray: loc1013
end: 2 end: 2
eltcount: 3 eltcount: 3
loc 1013 “hello” loc 1013 “hello”
loc 1014 “there” loc 1014 “there” N g
loc1015 “brown” loc1015 “brown” LW
loc10l | "D o™ YA
\
Q}‘QQQ% |

Resizing theArray for addLast Memory when we run AL.addLast("bear"):

Tuesday, October 4, 2022 1:53 PM ’ \q

private void resize(int newSize) { ‘L U\ \0\\ AerLRY

// make the new array

String[] *: new String[newSize]; (}_,Wb()ur*z V\
// copy items from the current theArray to newArray Q’N)‘; Z’S
for (int index = ©; index < theArray.length; index++) {

newArray[index] = this.theAr‘r‘ay[index];\x):L ‘W\Q/n'((\ml \
J

// change this.theArray to refer to the new, larger array
this.theArray = newArray;

\e\ OV

} ;
public void addLast(String newItem) { Qj\\]\tbf\ﬂ\m&
DR

if (this.isFull()) { * ’b
// add capacity to the array & \0
this.resize(this.theArray.length + 1); b(l_;’i\/(x.; \\
// now that the array has room, add the item

' EI;'{W \/

if (!(this.isEmpty())) {
this.end = this.end + 1;

}

this.eltcount = this.eltcount + 1;
this.theArray[end] = newItem;

Runtime
Tuesday, October 4, 2022

2:40 PM

Summarize Worst-Case Runtimes (in terms of number of elements in the list)

addLast is O(N) for ArrList because, in the

worst case, we have to resize the array,
and copying over the elements from the

o) or () | OLY) N
addFirst 0(:‘\, 00) i
addLast o(x) o, N) P

/old array to the new array is linear in the
number of elements. But we don't always

get(index)

o)
olN)

o)

4

have to do this resizing... can we improve
the runtime of addLast?

Cott §¢ add sy
loc 1012 ArrList
theArray: loc1013
end: 2
eltcount: 3
loc 1013 “hello” CONSVY
loc 1014 “there” NG YN
loc1015 “brown” CONETONY
LA C
Mo
\i e e
110

§
.

What if resize added two

spaces each time?

(}Df‘ﬁ“ﬁf&a
CoNeXbink

CD“S‘WM\\' Linear

operation

e S

N ecomes less
%:‘;i’:‘u Zfrequent'
u,“co*(w*‘

-
o
é

In practice, double the size every time (so the cost of
the linear operation buys us that many constant
operations for the next N adds, which is still linear in
the worst case but constant in the typical case)

(this picture is drawn horizontally for screen space
reasons)

l—\:c *l,olzc,c,t:.jlj_—\3 3—13/1

¢ B G

