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Does not change what names point to, so new
objects are created in the heap (because
addFirst and addLast return new data) but no (VIS
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Now let's try this with mutable lists! Lmu is mutable, contains 3, 7

Since addFirst and addLast are void methods that alter the data in the heap,
we want Lmu to always know about these changes without us writing code
to change what Lmu points to in the heap. How do we do this when we're
adding and removing nodes? We create separate MutableList and Node
objects, where the MutableList has access to the start node. Because
MutablelList is mutable, what "start" refers to can change, and we will be able
to access those changes from Lmu without changing what Lmu points to.
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Mutable: changes can happen to existing
objects in the heap (can also change
which objects the names in the
environment point to, even though
that's not shown in this picture)



