Immutable vs. Mutable lists in memory . N\@N\—
Friday, September 23, 2022 10:54 AM QJ{\ \“{Ow
—

L is immutable, already contains 7,3 \jﬂ—% \ k
I e Hﬂ###ﬂfffffﬂﬂﬂfff;?
L2.addFirst(5) L\,\\:Y IH

Lk

L2.addFirst(9)
L.addLast(4)

Does not change what names point to, so new
objects are created in the heap (because
addFirst and addLast return new data) but no (VIS

way to get to them from the environment! D_"r—}

QOO M
ﬁzvaiia'lc_ion: change what names point to PPN aN vﬂv_,%B—ﬂ 5

L2 = L2.addFirst(5) L7

L2 = L2.addFirst(9) ‘-m\u

L = L.addLast(4) m
Immutable: changes cannot

happen to existing objects in
the heap (but we can change

= LN\ L
which objects the names in
the environment point to) E}_" ‘ 3 ‘ ? U\




Now let's try this with mutable lists! Lmu is mutable, contains 3, 7

Since addFirst and addLast are void methods that alter the data in the heap,
we want Lmu to always know about these changes without us writing code
to change what Lmu points to in the heap. How do we do this when we're
adding and removing nodes? We create separate MutableList and Node
objects, where the MutableList has access to the start node. Because
MutablelList is mutable, what "start" refers to can change, and we will be able
to access those changes from Lmu without changing what Lmu points to.

Lmu.addFirst(5)
Lmu.addFirst(9)

Lmu.addLast(4) e/ﬂ\f\ on \n‘w/ﬂ)\'

Lww

Mutable: changes can happen to existing
objects in the heap (can also change
which objects the names in the
environment point to, even though
that's not shown in this picture)



