
CS 200 fall 2022 Lecture 4 (from OO): runtime and
sorting
Note: we did some example runtime annotations (from the lecture handout) in the first part of
the lecture. We defer to the additional readings linked from the lecture page for more information
about runtime.

Mergesort
Imagine we wanted to sort the list 111, 17, 22, 32, 112, 15, 33. You are working with
one way of doing this, Quicksort, in your homework. Another way is to take advantage of the
gmerging code we wrote in the last lecture and implement an algorithm called mergesort.

Background and example
Let’s imagine splitting the list down the middle, into a list of the first four elements (111, 17,
22, 32) and the last three elements (112, 15, 33). If we had a way of sorting these smaller
lists, into the lists 17, 22, 32, 111, and 15, 33, 112, we could simply call on the merge
method we’ve already written to get a sorted list:

111 17 22 32 112 15 33

SPLIT:

111 17 22 32 112 15 33

SORT:

17 22 32 111 15 33 112

MERGE:

111 17 22 32 112 15 33

1

We know how to split a list by calling subList, and we know how to merge a list. How do we sort
the smaller list 111, 17, 22, 32? Well, if we split that list down the middle into two lists
(111, 17 and 22, 32), sorted those two smaller lists, and merged them, we would get a
sorted list. To sort the even smaller list 111, 17, we could split it in two – and get the singleton
lists 111 and 17. Those are already sorted, so we can call merge on them, and get back 17,
111! The idea is that we keep splitting the sub-lists until we get down to a singleton list or an
empty list, which are already sorted, and then merge the smaller lists to get progressively bigger
sorted lists:

111 17 22 32 112 15 33

SPLIT:

111 17 22 32 112 15 33

SPLIT: SPLIT:

111 17 22 32 112 15 33

SPLIT: SPLIT: SPLIT: /

111 17 22 32 112 15 33

MERGE: MERGE: MERGE: \

17 111 22 32 15 112 33

MERGE: MERGE:

17 22 32 111 15 33 112

MERGE:

15 17 22 32 33 111 112

2

Mergesort algorithm
Notice that, from the outside in, we’re repeating the same action: let’s give a name to this idea of
splitting a list in half, sorting the halves, and merging the sorted halves. If we call this mergesort,
we can notice that the action of sorting the smaller halves is akin to performing mergesort on
those two halves. As an example, to mergesort 111, 17, 22, 32, 112, 15, 33, we split
it into its two halves (111, 17, 22, 32 and 112, 15, 33), mergesort each half, and
merge the sorted halves. Thus, the idea of mergesort can be summarized as:

1. If the input list is of size 1 or 0, return the list (because it’s already sorted!)
2. Otherwise, split the list down the middle into two halves
3. Mergesort each half
4. Merge each sorted half and return the result

In code, this looks like:

public static List<Integer> mergesort(List<Integer> lst) {
if (lst.size() <= 1) {

return new LinkedList<Integer>(lst);
} else {

int midpoint = lst.size() / 2;
List<Integer> firstHalf = lst.subList(0, midpoint);
List<Integer> secondHalf = ls.subList(midpoint, lst.size());
List<Integer> sortedFirstHalf = mergesort(firstHalf);
List<Integer> sortedSecondHalf = mergesort(secondHalf);
return merge(firstHalf, secondHalf);

}
}

We can simplify the code by getting rid of the intermediate variables:

public static List<Integer> mergesort(List<Integer> lst) {
if (lst.size() <= 1) {

return new LinkedList<Integer>(lst);
} else {

return merge(mergesort(lst.subList(0, lst.size() / 2)),
lst.subList(lst.size() / 2, lst.size());

}
}

3

Understanding mergesort recursion
In what order do the mergesort calls run? Let’s imagine running mergesort on the list [5, 4,
3, 2, 1]:

1. Call mergesort([5, 4, 3, 2, 1])
2. Since [5, 4, 3, 2, 1] is of length greater than 1, the result depends on the result

of running mergesort on [5, 4] and [3, 2, 1]. The running code cannot return
from calling mergesort([5, 4, 3, 2, 1]) yet, until those recursive calls finish.

3. Call mergesort([5, 4])
4. Since [5, 4] is of length greater than 1, the result depends on the result of running

mergesort on [5] and [4]. The running code cannot return from calling
mergesort([5, 4]) yet, until those recursive calls finish.

5. Call mergesort([5])
6. Since [5] is of length 1, the method call simply returns the list [5].
7. The call to mergesort([5, 4]) is not done yet, because it also depends on

mergesort([4])
8. Call mergesort([4])
9. Since [4] is of length 1, the method call simply returns the list [4].
10. The call to mergesort([5, 4]) can finish, by calling merge on the lists [5] and [4]

(the results of steps 6 and 9) and returns [4, 5]
11. The call to mergesort([5, 4, 3, 2, 1]) is not done yet, because it also

depends on mergesort([3, 2, 1])
12. Call mergesort([3, 2, 1])
13. Since [3, 2, 1] is of length greater than 1, the result depends on the result of

running mergesort on [3, 2] and [1]. The running code cannot return from calling
mergesort([3, 2, 1]) yet, until those recursive calls finish.

14. Call mergesort([3, 2])
15. Since [3, 2] is of length greater than 1, the result depends on the result of running

mergesort on [3] and [2]. The running code cannot return from calling
mergesort([3, 2]) yet, until those recursive calls finish.

16. Call mergesort([3])
17. Since [3]is of length 1, the method call simply returns the list [3].
18. The call to mergesort([3, 2]) is not done yet, because it also depends on

mergesort([2])
19. Call mergesort([2])
20. Since [2] is of length 1, the method call simply returns the list [2].
21. The call to mergesort([3, 2]) can finish, by calling merge on the lists [3] and [2]

(the results of steps 17 and 20) and returns [2, 3]
22. The call to mergesort([3, 2, 1]) is not done yet, because it also depends on

mergesort([1])

4

23. Call mergesort([1])
24. Since [1] is of length 1, the method call simply returns the list [1]
25. The call to mergesort([3, 2, 1]) can finish, by calling merge on the lists [2, 3]

and [1] (the results of steps 21 and 24) and returns [1, 2, 3]
26. The call to mergesort([5, 4, 3, 2, 1]) can finish, by calling merge on the lists

[4, 5] and [1, 2, 3] (the results of steps 10 and 25) and returns [1, 2, 3, 4,
5]

Runtime of mergesort
The runtime of mergesort can be expressed as recurrence, because it is a recursive method. It
will also depend on the runtime of merge.

Stop and think: If the input list, to mergesort is of length n, calling merge on the two halves of
that input list will run in O(N). Why is that?

The worst case runtime of mergesort is through the else-statement (stop and think: why is the
base case not the worst case?). subList will run in O(N) time, and the method also does some
constant-time (O(1)) operations to compute the midpoint of the list and call on subList and other
methods. It also calles mergesort twice, both times on an input of size N/2 (stop and think:
verify this for yourself.), and then calls on merge (an O(N) operation). Two O(N) operations
will still have an O(N) total runtime (stop and think: why?) Hence, if we use Tms(N) to
represent the time to run mergesort on a list of length N, we have

Tms(N) = O(1) + O(N) + 2 * Tms(N/2)

The closed-form of this recurrence relation turns out to be O(N * log N). You can see a more
detailed explanation in this book chapter. Intuitively, however, this makes sense – for each step
of mergesort, we are doing some operation in linear time (the N of N * log N) and some
operation on a problem half the size (the log N of N * log N).

5

https://dcic-world.org/2021-08-21/part_algorithms.html#%28part._solving-recurrences%29

