
fun sum(numlist :: List<Number>) -> Number:
doc: "any-negatives numbers in list"
cases (List) numlist:
| empty => 0
| link(fst, rst) => fst + sum(rst)

end
end

numlist = [list: 7, 5, 4]

7 + numlist = [list: 5, 4]

5 + numlist = [list: 4]

numlist = [list: ]4 + 

0 

sum([list: 7, 5, 4])

original call

local context

input parameters

function call

This slide shows a FUNCTION CALL DIAGRAM. 

It starts with a concrete example. 

Each time a function gets called, we draw a 
box. The parameters are listed in the shaded 
area inside the box. When the function call 
finishes, we erase the box (and its contents).

The local context is the part of the 
computation that is waiting on the result of 
the function call.



fun sum(numlist :: List<Number>) -> Number:
doc: "any-negatives numbers in list"
cases (List) numlist:
| empty => 0
| link(fst, rst) => fst + sum(numlist)

end
end

numlist = [list: 7, 5, 4]

7 + numlist = [list: 7, 5, 4]

7 + numlist = [list: 7, 5, 4]

numlist = [list: 7, 5, 4]7 + 

sum([list: 7, 5, 4])

This slide shows what would happen on a 
broken version of sum that calls the function 
again on the ENTIRE list, rather than on the 
rest of the list, in the link case. (See the 
highlighting on the code for the change).

In the previous slide, numlist got shorter on 
each call to sum, eventually getting down to 
the empty list. Once the empty list is reached, 
an answer is returned that allows the entire 
computation to finish.

Here, since numlist never gets shorter, 
running the program keeps generating new 
calls to sum forever (or until Pyret runs out of 
memory in your browser). 

goes on forever



fun any-negative(numlist :: List<Number>) -> Boolean:
cases (List) numlist:
| empty => false
| link(fst, rst) => (fst < 0) or any-negative(rst)

end
end

You try it – work out the function-call 
diagram for the call to any-negative 
that’s shown below the code.

(the solution is on the next page)

any-negative([list: 2, -3, 9])



fun any-negative(numlist :: List<Number>) -> Boolean:
cases (List) numlist:
| empty => false
| link(fst, rst) => (fst < 0) or any-negative(rst)

end
end

numlist = [list: 2, -3, 9]

(2 < 0) or numlist = [list: -3, 9]

(-3 < 0) or numlist = [list: 9]

numlist = [list: ](9 < 0) or

false

any-negative([list: 2, -3, 9])

original call

local context

input parameters

function call

In reality, the gray boxes aren’t run, 
because Pyret computes (-3 < 0), 
determines that it is true, then returns 
true as the value of the or without 
looking at the rest of the function. But 
that’s a minor detail here.

false

true

false
value of 

expression on fst


