fun sum(numlist :: List<Number>) -> Number:
doc: "any-negatives numbers in list"
cases (List) numlist:
| empty => 0
| link(fst, rst) => fst + sum(rst)
end
end

/ original call function call

sum([list: 7, 5, 4])

input parameters

local context




fun sum(numlist List<Number>) -> Number:
doc: "any-negatives numbers in list"
cases (List) numlist:
| empty => 0
| link(fst, rst) => fst + sum(numlist)
end
end

sum([list: 7, 5, 4])

numlist = [list: 7, 5, 4]

7+ | numlist = [list: 7, 5, 4]

7+ numlist = [list: 7, 5, 4]

7+ numlist = [list: 7, 5, 4]

I =l

This slide shows what would happen on a
broken version of sum that calls the function

again on the ENTIRE list, rather than on the

rest of the list, in the link case. (See the
highlighting on the code for the change).

In the previous slide, numlist got shorter on
each call to sum, eventually getting down to

the empty list. Once the empty list is reached,
an answer is returned that allows the entire

computation to finish.

Here, since numlist never gets shorter,
running the program keeps generating new
calls to sum forever (or until Pyret runs out of
memory in your browser).

ma® goeson forever



fun any-negative (numlist
cases (List) numlist:
| empty => false
| link (fst, rst) =>
end
end

List<Number>)

(fst < 0)

-> Roolean:

or any-negative (rst)

any-negative([list: 2, -3, 9])

You try it — work out the function-call
diagram for the call to any-negative
that’s shown below the code.

(the solution is on the next page)



fun any-negative (numlist :: List<Number>) -> Boolean:
cases (List) numlist:
| empty => false
| link(fst, rst) => (fst < 0) or any-negative(rst)
end

end
original call
any-negative([list: 2, -3, 9])

value of
expression on fst

local context




