
Nested	Functions	Review
Kathi	Fisler,	CS-111

fun filter-by-discount(t :: Table, d :: String) -> Table:
doc: "filter table to rows with given discount"
fun has-discount(r :: Row) -> Boolean:
r["discount"] == d

end
filter-by(t, has-discount)

end

student-tickets =
sum(filter-by-discount(event-data, "student"),

"tickcount")

Why	is	has-discount	nested	inside	filter-by-discount?	– Look	at	code	structure

To	filter-by-discount,	we	
need	to	use	filter-by

filter-by	requires	a	function	
that	takes	a	Row	and	
returns	a	Boolean

(this	is	just	how	Pyret works)

has-discount	needs	to	
compare	the	value	in	the	
discount	column	to	the	

value	for	d	originally	given	
to	filter-by-discount

d	is	only	visible	
(only	gets	substituted)	
within	the	body	of	its	
enclosing	 function	

thus,	has-discount is	nested	inside	filter-by-discount

fun filter-by-discount(t :: Table, d :: String) -> Table:
doc: "filter table to rows with given discount"
fun has-discount(r :: Row) -> Boolean:
r["discount"] == d

end
filter-by(t, has-discount)

end

student-tickets =
sum(filter-by-discount(event-data, "student"),

"tickcount")

How	do	the	pieces	tie	together?	Evaluate	this	file	by	hand	– what	order	do	steps	happen	 in?

1. Pyret remembers	that	you	defined	a	filter-by-discount	 function,	 but	doesn’t	 look	inside	 the	body
2. Pyret notices	that	you	want	to	define	student-tickets,	but	must	evaluate	the	sum(…)	 expression	first
3. Pyret calls	filter-by-discount.	 It	substitutes	event-data	for	t	and	“student”	for	d	in	the	function	body
4. Pyret remembers	that	you	defined	has-discount,	but	doesn’t	 look	inside
5. Pyret evalulates the	filter-by	call.	
6. Internally,	Pyret calls	has-discount	once	on	each	row.
7. Pyret calls	sum	on	the	table	that	resulted	from	filter-by-discount,	 then	remembers	 the	value	of	 student-tickets

1

7
3

4

5
6 “student”

event-data

2

