
 

 

 
Abstract 

 
In this paper, we propose a new region-based method for 

accurate motion estimation using discrete optimization. In 
particular, the input image is represented as a tree of 
over-segmented regions and the optical flow is estimated by 
optimizing an energy function defined on such a region-tree 
using dynamic programming. To accommodate the 
sampling-inefficiency problem intrinsic to discrete 
optimization compared to the continuous optimization 
based methods, both spatial and solution domain 
coarse-to-fine (C2F) strategies are used. That is, multiple 
region-trees are built using different over-segmentation 
granularities. Starting from a global displacement label 
discretization, optical flow estimation on the coarser level 
region-tree is used for defining region-wise finer 
displacement samplings for finer level region-trees. 
Furthermore, cross-checking based occlusion detection 
and correction and continuous optimization are also used 
to improve accuracy. Extensive experiments using the 
Middlebury benchmark datasets have shown that our 
proposed method can produce top-ranking results. 

1. Introduction 
As an active research topic for many years, the goal of 

optical flow estimation is to recover a dense 2D vector field 
encoding scene object motion or camera motion as 
displacements between corresponding pixels in consecutive 
images.  For a more extensive review, the reader can refer 
to some previous surveys such as [19, 20]. 

Following the seminal work of Horn and Schunck [2], 
most state-of-the-art algorithms formulate the optical flow 
estimation as an energy minimization problem [3-15], for 
which the variational-calculus based computation 
framework has been the top-performing method and gained 
much popularity in the research community [3-6]. 
However, such optimization schemes based on continuous 
mathematics often suffer the problems of over-smoothing 
due to their restricted convex flow smoothness 
regularizations. Also due to their gradient-descent based 
minimum searching, the optimization could be trapped by 
local minima, which result in poor performance for sharp 

motion discontinuities and for large motion displacements 
[10].  

On the other hand, a similar energy-minimization 
computational framework as above also dominates in the 
top-ranking disparity/depth estimation algorithms. 
However, in contrast, discrete optimization schemes such 
as graph-cuts, belief propagation and dynamic 
programming have gained more popularity over the 
continuous counterparts due to their better ability in 
optimizing non-convex energy functions. 

Then naturally it leads one to wonder if such discrete 
optimization schemes are also applicable to optical flow 
estimation which bears commonalities with the stereo 
matching problem. To this end, considerable efforts [7-11] 
have been devoted recently in enabling discrete 
optimization schemes for optical flow estimation and 
promising results have been reported using the Middlebury 
quantitative evaluation and benchmarking datasets [1]. 
Moreover, compared to pixel-based stereo matching 
approaches, region based ones have demonstrated their 
superior capability in handling texture-less regions and 
occlusions, which are also problematic issues in optical 
flow estimation. Surprisingly, there are only very few 
works that have incorporated color segmentation 
information for better optical flow estimation. So in this 
paper, we propose a new coarse-to-fine region tree based 
optical flow estimation method which combines the proven 
advantages of discrete optimization and region based image 
representation. In the following, we first review some 
previous related work in Section 2. Then in Sections 3 and 
4, we give an overview first and then, elaborate our 
proposed approach. In Section 5, we show that the 
proposed approach can achieve superior performance based 
on the Middlebury optical flow evaluation.  Finally, we 
conclude our paper in Section 6. 

2. Related work 
Several previous attempts have applied discrete 

optimization schemes in optical flow estimation. In 
general, the original optical flow problem is mapped into a 
labeling problem through discretization and then a 
well-known discrete optimization scheme such as 
graph-cuts [7] or belief-propagation [8] is adapted to 

 
Optical Flow Estimation on Coarse-to-Fine Region-Trees using Discrete 

Optimization  
 

Cheng Lei and Yee-Hong Yang  
Department of Computing Science 

University of Alberta, Edmonton, AB, Canada 
{clei,yang}@cs.ualberta.ca 

1562 
 
2009 IEEE 12th International Conference on Computer Vision (ICCV) 
978-1-4244-4419-9/09/$25.00 ©2009 IEEE



 

 

finding the best label assignment for all the labeling targets 
(matching primitives) such as pixels, regions or layers, 
from which the final optical flow field is induced by 
mapping the labels back to displacement vectors.  

Based on whether or not discretization is directly done in 
the flow solution space, we can roughly classify such 
methods as direct [7-9, 12]  and indirect [10-11, 15] 
discretization based methods. In direct discretization based 
methods, the labels are a direct discrete sampling of the 
final 2D displacement search space. That is, each label 
corresponds to a sampled 2D displacement vector. While in 
indirect discretization based methods, no displacement 
discrete sampling is done.  

Many recently proposed methods with very promising 
performance also adapt the discrete optimization schemes 
[10-12].  Specifically, in the fusion-flow method [10], the 
pixel-wise label sets are locally created from a set of 
candidate solutions obtained by running different 
continuous flow algorithms or the same algorithm using 
different parameter settings. Then graph-cuts optimization 
is used to find the best label assignment for fusing 
candidate solutions. A similar fusion idea has also been 
investigated in [11]. The original minimization problem is 
formulated as a series of binary sub-problems, each of 
which can be solved iteratively via the extended discrete 
graph-cuts with alpha-expansion method that facilitates 
large energy minimization moves. Similar to [10], the set of 
candidate displacement vectors to be fused have to be 
provided by standard continuous optical flow algorithms. 
Thus the success of both methods is largely dependent on 
the quality of the initial solution. Another piece of related 
work is presented in [12], in which a framework based on a 
dynamic, discrete MRF is proposed for morphing images 
using a grid of control points. Discrete MRF optimization is 
used to iteratively and accumulatively optimize the 
displacement vectors at the control points from which the 
dense optical flow field is derived based on the influence 
functions. 

The promising performance as demonstrated using the 
Middlebury benchmark database of all of the above 
mentioned recent attempts suggests that discrete 
optimization has great potential in optical flow estimation. 
However, in addition to the optimization framework, the 
image representation can also play an important role in the 
performance. In particular, region based representation has 
shown unique advantages over pixel based representation 
in stereo matching [17, 18]. So it is intuitive to expect 
similar applicability and advantages of region based 
representation in optical flow estimation.  
 Some efforts [13-16] have also been made in this regard. 
In particular, in [14], a method is proposed that can jointly 
segment consecutive frames into small regions of 
consistent size and compute the optical flow based on 
statistical modeling of an image pair using constraints 
based on appearance and motion. Bidirectional motion is 

estimated using spatial coherence and color similarity 
between segmented regions under the translational motion 
model.  In [15], image segmentation and graph-cuts 
optimization are incorporated to tackle the optical flow 
problem using a layered model. Each region is first 
assigned with an affine motion model from sparse 
correspondences. Motion layers are extracted by grouping 
regions with similar rigid motions and by identifying the 
dominant ones. Then as an indirect discretization based 
method, an energy function measuring the quality of label 
assignments of regions and pixels to layers is minimized 
via graph-cuts. Although very promising results have been 
obtained, the assumption on the existence of dominant rigid 
motion layers limits its applications. Different from [14, 
15], [16] uses the segmented color regions as soft 
constraints in the affine motion model in the classic 
variational optical flow framework as regularization 
instead of as matching primitives. To avoid 
over-regularization on non-rigid motions, a confidence 
map encoding the fitness of the affine region motion model 
is used.  
 Despite their differences, all of the above efforts of 
incorporating segmentation information for optical flow 
estimation have commonly observed significant 
performance improvements in handling texture-less regions 
and in preserving sharp motion discontinuities.  

Our work is closely related to [18], in which stereo 
matching is done by optimizing an energy function defined 
on a minimum spinning tree of over-segmented image 
regions using dynamic programming. The advantage of 
using such a region-tree based representation over using the 
region graph as in [14, 17] is that under the assumption that 
depth discontinuities coincide with intensity 
discontinuities, the number of edges that cross depth 
discontinuities, i.e., violate the smoothness constraint, can 
be minimized. This can result in “smarter” smoothness 
enforcement [22,23] in subsequent optimization. 
Furthermore, the cycle-less region tree structure also 
enables us to use simpler or more efficient optimization 
methods such as dynamic programming. In this paper, by 
taking advantage of commonalities between optical flow 
estimation and stereo matching, we extend [18] and 
propose a new coarse-to-fine region-tree framework for 
optical flow estimation.  

3. Propose algorithm 
3.1. Problem formulation and notations 

Our paper is direct discretization based and formulates 
the optical flow estimation as a discrete energy 
minimization problem. In particular,  two  consecutive 
input images ��  and ����  are represented by a spatial 
structure � of a set of matching primitives  � spanning the 
whole image. Then the optical flow field �	
 ��  from 
image ��  to ���� is recovered through finding an optimal 
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labeling 
��� which assigns each primitive � � ��� a label 
� � �� , where �	
 ��  denote the horizontal and vertical 
components of the displacement vector field, respectively. 
Such an 
��� is found by minimizing an energy function ��
���� with  the general form of  ������� � ������
���� � � � ��������
����      (1) 
where  ����� represents the data term and �������  the 
smoothness term. 

Similar to many previous works, the data term �������� 
measures the brightness matching error between two 
images correlated by a warping induced from the optical 
flow �	
 �� corresponding to 
. And the smoothness term ��������
� enforces the piecewise smoothness regularity 
of the optical flow by penalizing spatial variance in the flow 
field �	
 �� . The positive constant �  gives the relative 
weight of the smoothness penalty.   

Each primitive � � ��� maintains its own displacement 
look-up-table (LUT)  ! which defines a bijection mapping 
of each label � � �� to the corresponding 2D displacement 
vector��"�
 #��. By looking-up  !, the energy terms of the 
candidate label can be evaluated during optimization and 
the optical flow field �	
 �� is induced from the resultant 
labeling 
 . 

3.2. Overview 
Our proposed method is a region-based one and uses a 

new coarse-to-fine (C2F) paradigm. That is, as illustrated in 
Figure 1, multiple-level coarse-to-fine over-segmentations �$%&'( � )
* 
+, are done to the input images. For each 
segmentation level l, the over-segmented regions -& form 
the corresponding primitive set �&  on which a spanning 
region-tree .& is built as �&.  

Then starting from the coarsest segmentation level to the 
finest one, the corresponding labeling problem is solved 
through minimizing the energy function (1) defined on the 
region-tree .&   using dynamic programming (DP).  The 
results of the coarser level region-tree are used by the finer 
level to refine the search range of motion displacements. 

Finally the resulting optical flow of the finest level is 
further smoothed using local continuous optimization. Also 
cross-checking based inconsistency detection can be 
optionally done to correct errors due to occlusions by 
similarly recovered optical flow �	/
 �/� from ���� to �� .  

 For better clarity, our proposed algorithm is summarized 
as follows.   

 
 

Step 1: Build image pyramids and use downsized images to probe 
the initial displacement search ranges (Section 4.3) 

Step 2: At each image pyramid level, over-segment image �� 
using +  different granularity constraints and build the 
corresponding + region-trees  (Section 4.1) 

Step 3: Iterate from segmentation level l = 0 to + 
Step 4: In each iteration:  

(a) Setup the label-to-displacement LUT  01for each region 2& 
in the current region-tree .& (Section 4.2 and 4.3) 

(b) Evaluate “label space images” for all the hypothesized 
labels � � �. GPU is used for better efficiency in fast image 
interpolation (Section 4.4) 

(c) Run DP to optimize the corresponding energy function (7) 
and induce the optical flow field �	
��&�from the resultant 
optimal labelling 
�.(�  (Section 4.4) 

Step 5: Goto Step 3 if  ( 3 +, otherwise obtain the optical flow �	
 ���from �� to����at the current pyramid level  
Step 5: (Optional) Recover the optical flow �	/
 �/��from ���� to ��  and perform cross-checking based correction (Section 

4.5-a ) 
Step 6: Perform continuous optimization for smoothing ( Section 

4.5-b ) 
Step 7: Goto Step 2 if there is a finer scale image pyramid level 

 

List 1:  Workflow of our proposed algorithm 
 

Please note that throughout this paper, we use the same 
scheme as that specified in the Middlebury Optical Flow 
site to color the optical flow as shown in Figure 1. 

Figure 1: Two-Level coarse-2-fine over-segmentations of the dateset “Schefflera” and its optical flow recovery procedure. 

(a) Coarse level  

(b) Fine level 

For example, regions B, C and D in 
a fine level are merged into their 
“container region” A in a coarse 
level 

A 

B C 
D 

Region merging 

Over-Segmentations Optical flows 

C2F optical 
flow estimation 
& refinement 

Optical flow 
coloring 
scheme
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4. Implementation details 
4.1. Coarse-to-fine region trees 

So far, two image representations are most often used in 
motion estimation -- the traditional pixel grid and the 
motion layer representations. The former one is simple but 
suffers from higher ambiguous matching possibility, while 
the main challenge of using the latter one is in difficulties of 
correct layer segmentation and layer motion 
parameterization without prior knowledge.  

As a trade-off between enabling matching primitives to 
contain enough information with a large support area and 
reducing the risk of violating the parameterization 
assumption with a small support area, representations using 
over-segmented regions have shown great potentials in [14, 
17, 18]. Such representations can reduce the computational 
complexity compared to pixel-based representations due to 
much fewer numbers of regions. Also given the smaller size 
of the regions, the chance that color segmentation errors 
propagate into the matching process is reduced compared to 
layer based representation.  

These advantages motivate our new C2F region-tree 
based image representation. In particular, similar to [18], 
we apply mean-shift filtering [24] to the source image first 
and then a fusion process is iteratively performed to fuse 
most similar adjacent regions (pixels in the first iteration) 
into larger regions. By controlling the lower bound of the 
minimal region size, different granularity of image 
over-segmentations can be obtained. Such merging based 
process makes it possible to obtain efficiently multiple 
level over-segmentations in one single pass and guarantees 
that each larger region in the coarser level consists of 
exactly the same smaller regions that are in the larger 
region in its corresponding finer level segmentation. That 
is, each region 2 � -& in a coarser level l is composed of a 
group of adjacent regions � -4 of finer segmentation level 5 6 (, for each of which region 2 is its “container” region.  

Then for each segmentation level, a region adjacency 
graph is first constructed with the edge weights indicating 
the dissimilarity between two adjacent regions. From it, a 
minimal spanning tree is extracted so that the sum of the 
remaining edge weights is minimized.  Please refer to [18] 
for more details on building a region-tree for each 
segmentation level.  

In this way, in the coarse level, larger regions make 
finding roughly correct matches easier and more robust so 
that the region-dependent search range of interest can be 
located quickly, while in the finer level, small-size regions 
are better at recovering subtle details via local range 
refinements. Just using large-size regions will make it 
difficult to capture small motion in an optical flow field, for 
which small-size regions or pixels are preferred. However, 
if the region size is too small, the disadvantages similar to 
using single pixels may prevail. Therefore this 
coarse-to-fine region-tree representation provides a 

tradeoff to get the best of pixel and layer based 
representations. 

4.2. Displacement discretization 
Using discrete optimization to recover essentially 

continuous optical flow requires discretization. As a direct 
discretization based method, the continuous 2D 
displacement solution space has to be quantized and 
mapped to a discrete set of labels. However, brute-force 
discretization usually suffers from the so-called 
“discretization bottleneck” problem, which means that the 
number of labels required for sampling the search ranges 
with fine enough precision could be too large for efficient 
optimization. 

This problem is addressed using the above proposed 
coarse-to-fine region-tree representation. Specifically, at 
each level l, the displacement LUT  01 for each region�2& �-&   is built by uniformly sampling the corresponding 
displacement search ranges �7"�8901 
 "��:01 ;  and 
�7#�8901 
 #��:01 ;�in both the horizontal and vertical directions 
with a sampling interval <& . At the coarsest level, the 
displacement search ranges of �all regions are initialized 
globally with  

�"��:01 � #��:01 � ="�8901 � =#�8901 � > � ?@A�B
 C�  (2) 

wherein w and h are the width and height of the input 
images, respectively, and > is a positive constant. That is, 
we assume that the horizontal and vertical displacements 
each have upper bounds related to the image dimension. 
Then with the result of the last coarser l level known, the 
search range of a region�24 � -4 at the finer level 5 6 ( is 
setup based on its  container region �2& � -&�at level l. That 
is, suppose that the recovered displacement vector for 
region 2&�is ��"01
 #01�, the displacement search ranges for 
region �24 � -4 will be defined in a neighborhood around ��D"01
 #01E�  as 7"01 = F4
 "01 � F4;� and 7#01 = F4
 #01 �F4; , each of which is sampled with <4  to setup the 
corresponding displacement LUT  0G for region�24 � -4.  
By decreasing F4  and <4  level by level, an incremental 
displacement refinement can be achieved.  

By using region-dependent displacement search ranges 
and incrementally refining each region’s displacement 
search ranges level by level, just using a small number of 
labels can achieve similar quality of sampling to continuous 
methods, resulting in better efficiency. 

4.3. Initial search range probation 
As mentioned in section 4.2, we use an image dimension 

related upper bound (2) to initialize the displacement search 
range at the coarsest segmentation level. Since the optical 
flow directions and magnitude in an image can be arbitrary, 
we have to use a reasonably large >� value to safely capture 
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the full range. However, due to the limitation of memory 
and efficiency considerations, an affordable number of 
labels have to be limited. Therefore for large size images, 
the sampling interval may not be small enough for accurate 
matching in the coarsest segmentation level. Then the 
corresponding errors will be propagated to the next level 
and cannot be recovered.  

 To address this issue, we further take advantage of the 
image pyramid based multiple scale strategy often used in 
many continuous optical flow methods. In particular, for 
large images, we first apply our proposed method w.r.t. 
their half-size version and recover the displacement ranges 
�7"/�89
 "/��:;�  and �7#/�89
 #/��:; . Since for smaller 
search ranges, using the same number of labels enables 
using a small sampling interval, the result usually contains 
less errors. Then we apply our proposed method again w.r.t. 
the original images using �7H"/�89
 H"/��:;� and 
�7H#/�89
 H#/��:;  as initial search ranges. If necessary, 
more  pyramid levels can be used. In this paper, we find that 
a 2- level pyramid is sufficient for our work. 

4.4. Energy formulation and optimization  
As explained above, our algorithm estimates the optical 

flow by repeatedly performing discrete energy 
minimization on multiple-level region trees in a 
coarse-to-fine way. 

Suppose at segmentation level l, the region-tree .&  in 
question is defined on region node set -& with edge set �I&. 
Each edge �J�8
K� � I&  corresponds to a link between two 
adjacent regions 28 � -&  and 2K � -& . Each region 28�has 
L0M�pixels �N
 O� � 28 and is assigned with a label 
�28� ��� after optimization, which corresponds to a 2D 
displacement vector�D"
�0M�
 #
�0M�E. 

Then the data term and smoothness term in (1) are 
formulated w.r.t. the region-tree labelling 
�.&�  in a 
discrete form of  

 �����D
�.&�E = P Q�0M�-1 D
�28�E           (3) 
and  
 �������D
�.&�E = P R�S�M
T��I1 U
�28�
 
D2KEV             (4) 

where Q is the matching penalty function evaluating how 
well the corresponding region �28 � -& is matched between 
two images ��  and ����   according to the displacement 
vector �D"
�0M�
 #
�0M�E corresponding to label 
�28� and R�is 
the smoothness penalty function evaluating the penalty of 
assigning two linked regions 28  and 2K�with displacement 
vectors �D"
�0M�
 #
�0M�E and �U"
D0TE
 #
D0TEV, respectively. 

There are many possible definitions for Q and R. In this 
paper, we define Q based on the well-known zero-mean 
normalized cross-correlation measure �W [25]. In particular, 
we define 

Q�
�28� �
P X�YZ[\����:
]�
��^_U:�`
DaME
]�b
DaMEVc��d
e��aM

LaM   (5) 

and  
R U
�28�
 
D2KEV � f"
�0M� = "
D0TEf � f#
�0M� = #
D0TEf       (6)  

That is, the energy function to optimize w.r.t. the region 
tree .& at segmentation level l is  
�D
�.&�E 
��� �P Q�0M�-1 �
�28�� + � � P R U
�28�
 
D2KEV�S�M
T��I1        (7) 

The tree structure enables the use of efficient DP to 
optimize (7). In a recursive way, the region tree is 
bottom-up (leaves-to-root) traversed for label assignment 
hypothesis evaluation first and then top-down 
(root-to-leaves) traversed for decision making. For more 
details, the reader is referred to [18].  

Please note that when evaluating a hypothesized label, 
special attention must be paid in generating the 
corresponding “label space image” (as a generalization of 
the so-called “disparity space image” [21] used in stereo 
matching) since we are using region-dependent label to 
displacement mapping and the same label might 
correspond to different displacement vectors for different 
regions. Furthermore, for sub-pixel displacements, bilinear 
image interpolation is performed.  

4.5. Post-processing  
(a) Occlusion detection via cross-checking 
   The symmetric cross-checking technique is used for 
correcting optical flow errors due to occlusions.  In 
particular, two optical flows are estimated for images �� 
and ���� . Then occlusion reasoning is done by 
symmetrically cross-checking for consistency violations at 
the pixel level between these two optical flow fields.  

Specifically for each pixel �N
 O� � ��  with recovered 
optical flow vector �"
 #� , if its correspondence �N �"
 O � #� � �����has optical flow vector of �"/
 #/� and  the 
consistency measure '" � "/' �� '# � #/'�is greater than a 
preset threshold g, then pixel �N
 O� will be flagged as an 
inconsistent pixel. Then for each region in the finest 
segmentation level, if over half of its pixels are flagged as 
inconsistent, the region will be flagged as occluded.  

After all the occluded regions are flagged, a new DP 
optimization pass is done without the data and smoothness 
penalties applied to links involving an occluded region so 
that a larger motion change is made possible.  During the 
bottom-top DP evaluation traversal, an occluded region 
node will behave as a “pass-through” node, while during 
the top-bottom DP decision making traversal, an occluded 
region node will be assigned with its parent node label.  
This is similar to using neighbor information as done in 
traditional hole-filling approaches. But the difference is 
that the chosen neighbor is not found in the spatial domain, 
but in the region-tree domain in which the parent-child link 
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is assumed to connect regions with similar attributes based 
on the region-tree construction procedure. Of course, we 
have to point out that since our region-tree spans over the 
whole image, at some points some edges must cross 
discontinuities, violating such an assumption.  Despite its 
simplicity, this simple approach has shown to give very 
good performance in all of our experiments. 

(b) Continuous optimization based smoothing 
   Our method can recover very smooth optical flow results 
by using small region size constraint at the finest 
segmentation level. However, compared to methods using 
pixel based representations, there are still noticeable 
“graininess” in some areas since we assume all of the pixels 
in each region have the same displacement. For better 
quality, a final local continuous optimization as done in 
[10] is performed at the pixel level. Since the results from 
discrete optimization are usually very close to the true 
displacements, such local optimization mainly acts as a 
refinement and smoothing step.   

5. Experimental results and evaluation 
We use the 2-frame color version of the Middlebury 

optical flow benchmarking datasets [1] to quantitatively 
evaluate our proposed method. In particular, 12 image 
sequences from hidden fluorescent texture, realistic 
synthetic, stereo and real video categories are tested. In all 
of the experiments, we used the same set of parameters, 
which were not explicitly optimized for performance 

tuning. In particular, we use + � H  level image 
over-segmentations as it is observed to be enough to 
provide good performance. The constant > � )Y)h is used 
to initialize the global search range and F � )Yi is used for 
the local search range refinement. In discrete optimization, HiAHi and 11Ajj labels are used for the coarse level and 
fine level, respectively. The sampling interval <�  is 
correspondingly determined based on the ranges being 
sampled at each level. As for over-segmentation, the 
granularity in the coarse level is determined by limiting the 
region number to be around 3000, while for the fine level, 
the minimum region size is fixed at 5 pixels.  The threshold g is set as 1.0 and the normalized cross-correlation window 
size is 5x5 for the fine level and 3x3 for the coarse level. As 
for the smoothness penalty relative weight � , it is 
adaptively calculated in the same way as in [18] based on 
the region-based Kullback-Leiber divergence klmmmm. That is, � � >klmmmm  with > � )Yni . All these parameters are 
empirically set and could be further optimized. 
  In Table 1, we show the average angular error (AAE) and 
average end-point error (AEPE) of the top four algorithms 
at the time of submission. Our results of 8 datasets for 
quantitative evaluation are shown in Figures 2-5. It can be 
seen that the overall ranking of our method is pretty high 
(both 4th  for AAE and AEPE). In particular, the lowest 
AAE is obtained for the “Teddy” datasets and the lowest 
AEPE is obtained for the “Shcefflera” and “Teddy” and 
“Grove” datasets. One possible reason for relatively 
inferior AAE performance on other datasets may be due to 
our current method of discretization. That is, uniformly 
sampling in the horizontal and vertical displacement search 
range results in non-uniformity in angular sampling. 
Moreover, the average performance of our method on the 
Yosemite sequence also negatively impacts the overall 
ranking. This could be due to its small image dimension 
which makes the finest granularity regions still not fine 
enough to capture subtle motion details. We have found 
that using different parameters specific to this dataset could 
improve its performance to some extent. On the other hand, 
our method obtained superior evaluations around motion 
discontinuities in most datasets, showing our region-based 
representation has advantage in preserving motion 
boundaries.  Furthermore, using continuous optimization 
gives slightly better statistics than the one without using it 
and boosts the overall ranking by approximately one 
position. As shown in Figure 4, we compare the 
performance difference between using multiple level 
coarse-to-fine region trees and the traditional single-level 
one as in [18]. Specifically, optical flow result is also 
obtained as shown in the second column by using only the 
finer level regions. However, coarse-to-fine displacement 
refinement is still performed. As we can see, more errors 
are incurred along motion boundaries compared to the 
result using two-level region-trees as shown in the third 
column. For reference, the result from the state-of-art 

Figure 2: Cross-checking based inconsistency detection helps
correct errors due occlusions for the “Wooden” dataset, resulting
in sharp motion discontinuities.  

(a) Without cross-checking (b) With cross-checking 

Figure 3: Initialized with optical flow result from discrete
optimization, local continuous optimization at the pixel level can
smooth out the “graininess” due to the use of translational region
motion model. For the “Army” dataset from [1], the final result
becomes smoother while the average displacement magnitude
change is around 0.05 pixels, which means that results obtained
by only using discrete optimization could be quite accurate. 

(a) Without continuous optimization (b) With continuous optimization
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continuous optimization based method [3] is also included.  
By comparison, we can see using over-segmented regions 
instead of pixels does have unique advantage in handling 
sharp motion discontinuities. 
 As for the computation efficiency, take the Urban dataset 
[1] (image size 640x480 and max displacement is more 
than 40 pixels) as an example, our un-optimized 
implementation takes a total running time of about 261 
seconds on a PC with a dual-core AMD 2.2GHz CPU. 

6. Conclusion and discussion 
 In this paper, we have presented a new C2F region-tree 

based method for accurate optical flow estimation using 
dynamic programming optimization.  By using C2F 
region-tree based image representation and incremental 
displacement search range refinement, good trade-off 
between enabling matching primitive to contain enough 
information through larger support area and reducing the 
risk of violating the region motion parameterization 
assumption is achieved. The proposed method can produce 
sharp motion discontinuities through coarser segmentation 

while it is also capable of recovering subtle details through 
finer segmentation.  The promising results on the 
Middlebury benchmarking datasets show the effectiveness 
of our method.       

As for future work, we plan to investigate the use of 
polar coordinates based parameterization in displacement 
discretization. 
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Figure 5: Example results (2nd and 4th columns) on the Middlebury datasets along with ground truths (1st and 3rd columns)
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