Effective Reinforcement Learning for Mobile Robots

By William D. Smart and Leslie Pack Kaelbling

Presented by Gal Peleg CSCI2950-Z, Brown University March 1, 2010

Presentation Outline

- Forecast
- Background
 - Motivation &Problem Statement
 - The World of Reinforcement Learning (RL)
 - The Q-Learning Algorithm
 - RL Applied to Mobile Robots
 - The Learning Framework: Inclusion of Prior Knowledge
- Experimental Results
 - Corridor Following
 - Obstacle Avoidance
- Conclusions
- Future Work

Forecast

- It's easier and more intuitive for the programmer to specify what the robot should be doing
- Having a robot *learn* how to accomplish a task, rather than being told explicitly is an appealing idea
- The Authors introduce a framework for reinforcement learning (RL) on mobile robots and describe experiments that validate its performance

Motivation & Problem Statement

- Challenges
 - Programming robots can be very time-consuming
 - Many iterations to fine-tune low-level mapping from sensors to actuators
 - Robots' sensors and actuators are different from those of humans
 - Difficult to translate knowledge about a task into terms useful for the robot
- Instead...
 - Provide some high-level specification of the task and use machine learning to "fill in the details"

The World of Reinforcement Learning

- Can be described by
 - A set of states *S*, and a state of actions *A*
- At each (discrete) time step
 - Agent observes state s_t of the world
 - Chooses an action a, to take
 - Is then given a reward r_{t+1}
 - Reflects how good the action was in a short-term sense
 - Observes new state of the world s_{t+1}
- Goal
 - Use tuple $(s_t, a_t, r_{t+1}, s_{t+1})$ to learn a mapping from the state-action pair to an optimal value function

The Q-Learning Algorithm

- Q-Function
 - Is typically stored in a table, indexed by state and action
 - Usually starts with arbitrary values
- We iteratively approximate the optimal Q-Function based on our observation of the world

$$Q(s_t, a_t) \leftarrow \underbrace{Q(s_t, a_t)}_{old\ value} + \underbrace{\alpha_t(s_t, a_t)}_{learning\ rate} \times \underbrace{\left[\underbrace{r_{t+1}}_{reward} + \underbrace{\gamma}_{discount\ factor}\underbrace{\max_{a} Q(s_{t+1}, a)}_{max\ future\ value} - \underbrace{Q(s_t, a_t)}_{old\ value}\right]}_{old\ value}$$

 Considering all possible actions given a state, we select the one with the largest Q-value

$$\pi^*(s) = \arg \max_a Q(s, a)$$
.

Blackjack Q-Learning Example

```
public Static final int numsteep = בשש;
            /** The number of cards left in the deck before cutting off and re
            public static int CUT_OFF_SIZE = 10 * numPlayers:
            /** The minimum bet allowed in this simulation. */
            public static double MIN_BET = 5.0;
            public static final double ALPHA = 0.1; //learning rate
            public static final double GAMMA = 0.9; //discount factor
            public static final int COUNT_STATES = 3;
📳 Problems @ Javadoc 😥 Declaration 📮 Console 🕱 🔌 💇 Error Log
<terminated> BlackjackSimulator [Java Application] /System/Library/Frameworks/JavaVM.framework/
```

Reinforcement Learning Applied to Mobile Robots

- Makes sense because
 - We can design a much higher-level task description in the form of the reward function, R(s,a)
- Shortcomings
 - Q-learning requires discrete states and actions
 - Authors combat this by using a suitable value-function approximation technique (i.e. the HEDGER algorithm)
 - Sparse reward functions
 - Combated through "Inclusion of Prior Knowledge," the meat and potatoes of the authors' learning framework

The Learning Framework: Inclusion of Prior Knowledge

- First phase
 - Value-Function approximation is not complete enough to control the robot
 - Robot is therefore supplied control policy
 - Can be through actual control code or teleoperation
 - Exposes the RL system to "interesting" parts of the state space
 - RL system passively watches states, action, and rewards
 - We use these to bootstrap the value-function approximation
- Second phase
 - Full control is handed back to the standard RL system
 - Robot is now capable of finding reward-giving states

Corridor Following: The Setup

- State Space Contains 3 Dimensions
 - Distance to end of corridor, Distance from left hand wall, Angle to target point
- Rewards
 - +10 for reaching end of corridor, o for anything else
- Phase 1 tested using
 - Coded control policy, direct control examples, and simulation

Corridor Following: Results

- Coded Control Policy
 - Statistically indistinguishable from "optimal"
- Direct Control Examples
 - Also statistically indistinguishable from "optimal"
 - Experienced more varied, so framework is able to generalize more effectively
- Simulation
 - Fastest simulation time > 2 hours
 - Both phase 1 learning attempts above were done in 2 hours

Fig. 4. Corridor following performance with simple policy examples.

Fig. 5. Corridor following performance with direct control examples.

Fig. 6. Performance on the simulated corridor following task

Obstacle Avoidance: The Setup

- State Space Contains 2 Dimensions
 - Distance to goal, Direction to goal
- Rewards
 - +1 for reaching target, -1 for collision with obstacle, otherwise o
- Phase 1 tested using
 - Only direct control examples, and simulation
- Much harder task

Obstacle Avoidance: Results

- Direct Control Examples
 - Statistically indistinguishable from "optimal"
- Simulation
 - Took more than 6 hours to complete the task, and reached the goal only 25% of the time

	Starting distance		
	1m	2m	3m
Successful	46.2%	25.0%	18.7%
Time (hours)	2.03	6.24	6.54

TABLE I

PERFORMANCE ON THE SIMULATED OBSTACLE AVOIDANCE TASK.

Fig. 9. Successful runs (out of 10) for the obstacle avoidance task.

Fig. 10. Performance on the obstacle avoidance task.

Conclusions

- 1. Final performance for both tasks is significantly better than any of the examples used in phase 1 training
- 2. Using example trajectories allows us to incorporate *human knowledge* about how to perform a task in the learning system
- 3. The framework is capable of learning good control policies more quickly than moderately experienced programmers can hand-code them

Future Work

- How complex a task can be learned with sparse reward functions?
- How does the balance of "good" and "bad" phase one trajectories affect the speed of learning?
- Can we automatically determine when to change learning phases?