Effective Reinforcement Learning for
Mobile Robots

By William D. Smart and
Leslie Pack Kaelbling

Presented by Gal Peleg
CSCI2950-Z, Brown University
March 1, 2010

Proceedings of IEEE International Conference on Robotics and Automation (ICRA
2002), volume 4, pages 3404-3410, 2002.

_
Presentation Outline

Forecast

Background
e Motivation &Problem Statement
The World of Reinforcement Learning (RL)
The Q-Learning Algorithm
RL Applied to Mobile Robots
e The Learning Framework: Inclusion of Prior Knowledge

Experimental Results

e Corridor Following
e (Obstacle Avoidance

Conclusions
Future Work

.

Forecast

It’s easier and more intuitive for the programmer to
specify what the robot should be doing

Having a robot learn how to accomplish a task, rather
than being told explicitly is an appealing idea

The Authors introduce a framework for
reinforcement learning (RL) on mobile robots and

describe experiments that validate its performance

p — , o

Motivation &Problem Statement

Challenges

e Programming robots can be very time-consuming

« Many iterations to fine-tune low-level mapping from sensors
to actuators

e Robots’ sensors and actuators are different from those of
humans

e Difficult to translate knowledge about a task into terms
useful for the robot

Instead...

e Provide some high-level specification of the task and use
machine learning to “fill in the details”

= = =
The World of Reinforcement Learning
Can be described by

e A set of states S, and a state of actions A

At each (discrete) time step
e Agent observes state s, of the world
e Chooses an action a, to take

e [sthen given areward r,_,

« Reflects how good the action was in a short-term sense

e Observes new state of the world s

Goal

e Use tuple (s,,qa,,r,,,,s,,,) to learn a mapping from the
state-action pair to an optimal value function

t+1

m{earning Algorithm

e Q-Function
« Is typically stored in a table, indexed by state and action

 Usually starts with arbitrary values

e We iteratively approximate the optimal Q-Function
based on our observation of the world

expected discounted reward old value
-~ e ~ e N
oty) WS¢, Ut t\Ot, Ui Ft+1 ! . t+1,&) — ty Ut
Q(s¢, a Q(s¢,a¢) + o(8,a8) X| ey + g max (Q(s¢11,a) — Q(s¢, a
N, et Ne— p— —— v ~ a -
old value learning rate reward discount factor h

maz future value

e Considering all possible actions given a state, we select
the one with the largest Q-value

7w (8) = arg mfo (8,a).

- Iackjack Q-Learning Example

PUDLLL STUTLL TLIUWL LML umaLEsy = 199;

/** The number of cards left in the deck before cutting off and rg
public static int CUT_OFF_SIZE - 19 * numPlayers;

/** The minimum bet allowed in this simulation. */
public static double MIN_BET - 5.9;

public static final double ALPHA - 9.1; //learning rate
public static final double GAMMA - 9.9; //discount factor

public static final int COUNT_STATES - 3;

2. Problems @ Javadoc l@ Declaration |E Console 330__] Error Log |

<terminated> BlackjackSimulator [Java Application] /System/Library/Frameworks/JavaVM.framework /|

//

v R S

Reinforcement Learning Applied to
Mobile Robots

Makes sense because

e We can design a much higher-level task description in
the form of the reward function, R(s,a)
Shortcomings
e Q-learning requires discrete states and actions

« Authors combat this by using a suitable value-function
approximation technique (i.e. the HEDGER algorithm)

e Sparse reward functions

» Combated through “Inclusion of Prior Knowledge,” the meat
and potatoes of the authors’ learning framework

The Learning Framework:

Inclusion of Prior Knowledge
First phase

e Value-Function approximation is not complete enough to
control the robot

e Robot is therefore supplied control policy
» Can be through actual control code or teleoperation
« Exposes the RL system to “interesting” parts of the state space

e RL system passively watches states, action, and rewards
» We use these to bootstrap the value-function approximation

Second phase

e Full control is handed back to the standard RL system
« Robot is now capable of finding reward-giving states

mdor Following: The Setup

* State Space Contains 3 Dimensions

* Distance to end of corridor, Distance from left hand wall, Angle to
target point

* Rewards

* +10 for reaching end of corridor, o for anything else

* Phase 1 tested using

e Coded control policy, direct control examples, and simulation

position in

corridor

Iy
Y

distance to end 10

e

———

-~ Corridor Following: Results

Coded Control Policy
Statistically indistinguishable from
“optimal”

Direct Control Examples

Also statistically indistinguishable
from “optimal”

Experienced more varied, so
framework is able to generalize more
effectively

Simulation

e Fastest simulation time > 2 hours

e Both phase 1 learning attempts above
were done in 2 hours

Steps to Goal

Steps

best example |

nnnnnn

L n L
5 10 15 20 25 30 5 10 15 20 25 30 35

Phase One

Phase Two

Training Runs ‘ Training Runs

Fig. 4. Corridor following performance with simple policy examples.

Steps to Goal

260

240 -

220 -

2 ample
@l N | . T ple._
D 160 -

140

120

100 F~ optimar™ =~ 177"

* 5 i0 s 10 is 20 25 30

Phase One Phase Two

Training Runs

Training Runs

Fig. 5. Corridor following performance with direct control examples.

Time (hours)

Time to Reach Goal

L
0.2

Fig. 6. Performance

L
0. 06 0.8

.4
Max Rotation Speed (rad/s)

on the simulated corridor following task.

- Obstacle Avoidance: The Setup

* State Space Contains 2 Dimensions

» Distance to goal, Direction to goal

* Rewards

* +1 for reaching target, -1 for collision with obstacle, otherwise o

* Phase 1 tested using

* Only direct control examples, and simulation

® Much harder task Obstacies

Starting Point / \

Reward Region

12

- Obstacle Avoidance: Results

* Direct Control Examples Ul N
c 8
. 3
e Statistically indistinguishable from =
“O t. l” “3
ptima § A i
O
.] 35 2+ 4
e Simulation Z
ol
e Took more than 6 hours to complete I
Phase One Phase Two
the task, and reached the goal only Training Runs Training Runs
2 5% Of the time Fig. 9. Successful runs (out of 10) for the obstacle avoidance task.
. Steps to Goal
Starting distance 140"
I | m | 2m | 5m | o]
Successful 46.2% 250% 18.7% o 1o B __bestexample |
Time (hours) 2.03 6.24 6.54 8w
o) or
TABLE [80 .
PERFORMANCE ON THE SIMULATED OBSTACLE AVOIDANCE TASK. ZZ . __"optimal" \—
Phase One Phase Two
Training Runs Training Runs

Fig. 10. Performance on the obstacle avoidance task.

— AR

Wi

Conclusions

1. Final performance for both tasks is significantly better
than any of the examples used in phase 1 training

2. Using example trajectories allows us to incorporate
human knowledge about how to perform a task in the
learning system

3. The framework is capable of learning good control
policies more quickly than moderately experienced
programmers can hand-code them

14

— —

 — %

gFuture Work

How complex a task can be learned with sparse reward
functions?

How does the balance of “good” and “bad” phase one
trajectories affect the speed of learning?

Can we automatically determine when to change
learning phases?

15

